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Preface 
 

 

 

In front of you is the thesis “Modeling the COVID-19 outbreak in Suriname: A comparison 

between a Stochastic model and a system of Differential equations”. It was written to fulfill the 

graduation requirements of the Faculty of Mathematical and Natural Sciences’ Bachelor of 

Science program in Mathematics, at the Anton de Kom University in Suriname.  

My research hypothesis was raised with my supervisor, Dr. R.E.J. Neslo. The research was 

difficult but conducting a thorough research allowed me to achieve the desired result.  

I would like to thank my supervisor for his great advice and support throughout this 

process. I would also like to thank Dr. Venetiaan, who had given her time to help me with 

proofreading my thesis.  

My mother deserves a special thanks: if not for her support and motivation, I would not 

have come this far. 

  



3 
 

Abstract 
 

 

The ability to predict the future number of infected individuals during the COVID-19 

outbreak plays a very important role in fighting the spread within a country. In this thesis we 

constructed a mathematical model for the COVID-19 pandemic during the 2020 outbreak in 

Suriname.  

We created two compartmental models based on publicly available data from Suriname. We 

show that a stochastic model behaves just as well as a model based on differential equations. Due 

to the close fit of the stochastic compartmental model, we also assumed that this model could be 

used to predict future number of cases. An assumption we verified with data outside of the 

modeling data. 

For a more accurate prediction model we recommend retrieving the data from the COVID-

19 management team directly and dividing some of the compartments into more detailed 

compartments.  
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Introduction  
 

 

 

From December 31st of 2019 through January 3rd of 2020, the World Health Organization 

(WHO) received reports of cases of pneumonia, where the causal agent was yet to be identified. 

On January 7th of 2020, a new type of coronavirus, dubbed 2019-novel coronavirus (2019-

nC0V), was isolated. By January 20th there had been reports of a total of 282 confirmed cases of      

2019-nCoV. Of these cases, 278 were from China, 2 from Thailand, 1 from Japan and 1 from the 

Republic of Korea. Among the 282 cases, 6 deaths had already been reported (World Health 

Organization, 2020). Within one week the virus had spread to 11 additional countries. This 

brought the total number of confirmed cases to 4593, which included 106 deaths (World Health 

Organization, 2020). According to the data reported in the WHO’s situation report on February 

11th of 2020, there had been a total number of 43103 confirmed cases and 1018 deaths across 25 

countries. By this time, the WHO had named the disease Coronavirus disease 2019, COVID-19 

for short. At the time of writing there had been over 186.2 million confirmed cases with over 4 

million deaths (World Health Organization, 2021). 

 

Such as any other disease COVID-19 has several symptoms. These symptoms range from 

mild symptoms like a fever, to life threatening symptoms like respiratory problems. Some of 

these symptoms require constant medical care, which result in hospital admission. There are 

some cases where the patient must be admitted to the intensive care unit (ICU). This led to the 

following realization: if the number of COVID-19 cases increases, the number of patients who 

need to be admitted to the hospital will also increase. This poses a problem for countries with 

limited hospital resources. One of these countries is the republic of Suriname. 

 

On March 13th of 2020 the first confirmed case of COVID-19 was reported in Suriname. By 

April 4th there had been 10 confirmed cases and 1 death. On May 19th of 2020, the number of 

confirmed cases started to increase, and the number of deaths increased on June 9th. As of July 1st 

of 2020, there had been 21,936 confirmed cases and 531 deaths (Suriname: Coronavirus 

Pandemic Country Profile, 2021). As these numbers kept growing every day, the strain on the 

medical sector of Suriname became noticeable. 

 

In most cases of a disease outbreak policy makers enforce different kinds of policies to 

reduce the infection rate of the disease. Some of these policies include social distancing, 

mandatory quarantine for contacts of infected individuals, partial- and full lockdowns. 

Mathematical models are used to predict the effectiveness of these policies beforehand. These 

models help predict the progression of the epidemic caused by the disease. Which in turn can 

give some insight into the number of resources (medicine, doctors, hospital beds, finances, etc.) 

necessary to handle the epidemic. 

 

Constructing a mathematical model that closely describes the COVID-19 pandemic in 

Suriname can be helpful in analyzing the behavior of the pandemic. It can also be used to predict 

future behavior of the disease. These predictions can in turn be used to see the effects certain 

policies could have on the pandemic.  
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Aleman, Wibisono and Schwartz (2009) presented a non-homogeneous agent-based 

simulation model which accounted for individual behavior and transmission rates at the Winter 

Simulation Conference. Their model considered the effect the disease had on the different age 

groups, the rate of infection for the different types of contact between individuals and the type of 

transportation. They argued that adding these factors made their model more accurate than the 

traditional non-homogeneous mixing models. However, the downside to their model was the 

time needed for the simulation (Aleman, Wibisono, & Schwartz, 2009).  

 

Kretzschmar, Rozhnova and van Boven (2020) wrote a report that discussed the effect that 

isolation and contact tracing have on slowing down the COVID-19 epidemic. They constructed a 

stochastic model that described the early stages of an epidemic as a branching process. Their 

research showed that controlling the COVID-19 outbreak not only depended on isolating the 

infected but also tracking down and isolating known contact of the infected cases. This theory 

does however have some complications when it comes to using this in practice. This model can 

only be used while the situation can be described by a branching process and has exponential 

growth. On the plus side this model was constructed so that quantitative information can easily 

be inputted into the model for analysis (Kretzschmar, Rozhnova, & van Boven, 2020). 

 

This thesis presents a compartmental model for the COVID-19 spread in Suriname. These 

models are commonly described using a system of differential equations, but for this thesis we 

also created a stochastic compartmental model. We did this under the hypothesis that modeling 

the COVID-19 pandemic in Suriname using a stochastic compartmental model will give 

similar results as modeling the pandemic using a compartmental model based on a system of 

differential equations.  
 

The first chapter gives a brief overview of background information regarding the 

mathematical models used in this thesis. In the second chapter we discuss the data and the 

process of cleaning the data used for this model. The third chapter focusses on the construction 

of the models. In the first section we discuss the construction of the model based on a system of 

differential equations and the second section presents the stochastic compartmental model. The 

fourth chapter presents the results and  a comparison between both models. In the last section of 

this chapter, we did some future prediction using data outside the modeling data. In the last 

chapter of this thesis, we present our conclusions and recommendations for future research into 

this topic. 
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1 Compartmental models 
 

 

 

This chapter focusses on the background information for the models used in this thesis. The 

base model used in this thesis is a compartmental model. Compartmental models are models that 

describe the relationship between compartments within a system. 

 

When modeling a disease outbreak, the most used mathematical models are compartmental 

models. The population is divided into compartments. In most cases two of the compartments are 

the susceptible and the infected. The susceptible 𝑆 are the part of the population who have not 

yet been infected by the disease and are at risk of becoming infected. The infected 𝐼 are the part 

of the population who have been infected by the disease and this group can also infect 

individuals from the susceptible group. In some cases, there is a group named removed 𝑅. This 

group is the part of the population who have already recovered from the disease and are immune 

to reinfection or have died from the disease.  

 

Depending on the properties of the disease, it can be modeled as an 𝑆𝐼𝑆 or an 𝑆𝐼𝑅 

compartmental model. The former is used for nonfatal diseases where people who recover from 

the disease do not develop immunity against reinfection. In other words, a recovered individual 

becomes susceptible again. A possible path one can walk within this system is susceptible, 

infected, and then susceptible again. In the case of an 𝑆𝐼𝑅 model, the disease can be nonfatal or 

recovered individual develop immunity against reinfection or it could be a combination of both. 

The parameters detailing the relationship between these compartments can be described using 

differential equations or stochastic probability matrices.  
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1.1 Compartmental models based on a system of differential 

equations 
 

 

A differential equation is an equation that describes the connections between a quantity and 

the rate with which the quantity changes in a certain timeframe. The differential equations in 

compartmental models describe the connection between each compartment and the rate of 

change between these compartments. This rate of change can be expressed as the rate at which 

the disease is transferred.  

 

The most used mathematical model for a disease outbreak is the 𝑆𝐼𝑅 compartmental model. 

This model is usually described with a system of differential equations. In this model the 

population is split into three compartments. The compartment 𝑆𝑡 consists of the susceptible 

people within the population at time. These people have not yet been infected. The risk of 

infection is assumed to be equal for everyone in this category. The infected people in the 

population are put into the infected 𝐼𝑡 category. This group is also infective, because if they 

encounter individuals from 𝑆, they can infect these individuals. The last group 𝑅𝑡 are the infected 

individuals who are removed. This removal can be due to vaccination, recovery with immunity 

against reinfection and is some cases death.  

 

To determine describe how the compartments interact with each other, there are a few 

assumptions made for the 𝑆𝐼𝑅 compartmental model. One of these assumptions is that the rate of 

infection is depended on the population 𝑁 and that on average an individual encounters 𝛼𝑁 

individuals per time unit with 𝛼 being a function of the population size. This is called mass 

action incidence. The probability of an infected individual encountering a susceptible individual 

is equal to 𝑆/𝑁. Putting these two numbers together we get that the number of new infections per 

time unit can be calculated with (𝛼𝑁)(𝑆/𝑁) which becomes 𝛼𝑆. Which brings the rate of new 

infections to 𝛼𝑆𝐼. The rate at which the infected leave the infected group is assumed to be 

constant and equal to 𝛽𝐼 with 𝛽 being the recovery rate (Brauer, Castillo-Chavez, & Feng, 2019). 

The following assumptions are made for the 𝑆𝐼𝑅 compartmental model: 

 
 

 

 

      (1.1.1) 

 

 

 

Taking these assumptions into count, we get the following system of differential equations 

for the 𝑆𝐼𝑅 compartmental model: 

(i) The rate of new infections, α𝑆𝑡𝐼𝑡 is given by mass action 

      incidence. 

 (ii) At a rate of β𝐼𝑡, infected leave the infective group and go to the 

       removed group. 

(iii) 𝑁 remains constant i.e., there is no entry into or departure from 

       the population.  

(iv)The disease is not fatal. 
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      (1.1.2) 

 

With initial condition 𝑆0, 𝐼0 and 𝑅0. 𝑆𝑡 denotes the number of susceptible individuals at time 

t; 𝐼𝑡 denotes the number of infected individuals at time 𝑡; 𝑅𝑡 denotes the number of removed 

individuals at time 𝑡; 𝑆′𝑡denotes the change within the susceptible group from time 𝑡 − 1 to 𝑡, 

i.e. the number of new infections per time unit; 𝐼′𝑡 denotes the change within the infective group 

from time 𝑡 − 1  to 𝑡; 𝑅′𝑡 denotes the change within the removed group from time 𝑡 − 1 to 𝑡 i.e. 

the rate of recovery per time unit; 𝛼 denotes the transmission rate and 𝛽 denotes the recovery 

rate. 

 

The results from the differential equations in (1.1.2) can be used to calculate the number of 

people in each compartment at any time using the following equations: 
 

   (1.1.3) 

 

 

To further explain 𝑆𝐼𝑅 compartmental model, we will present an example.  

 

Consider community with a population of 𝑁 = 50000 and a disease 𝑋 with the following 

properties: a transmission rate 𝛼 of 0.00001, a recovery rate 𝛽 of 0.0715 and initial conditions 

𝑆0 = 45400, 𝐼0 = 2500 and 𝑅0 = 2100. This results in the following model: 
 

   (1.1.4) 

 

 

The number of individuals in each compartment for 3 consecutive days can be calculated 

using (1.1.3) and (1.1.4). For day one at 𝑡 =1 we calculate 𝑆1, 𝐼1 and 𝑅1 the following way: 

 

{

𝑆1 =  𝑆0 + 𝑆′0 = 45400 − 0.00001𝑆0𝐼0                   

𝐼1 =  𝐼0 + 𝐼′0 = 2500 + 0.00001𝑆0𝐼0 − 0.0715𝐼0

𝑅1 =  𝑅0 + 𝑅′0 = 2100 + 0.0715𝐼0                            

 = 

 

{

𝑆1 =  45400 − 0.00001 ∗ 45400 ∗ 2500 = 45400 − 1135                                              
𝐼1 = 2500 + 0.00001 ∗ 45400 ∗ 2500 − 0.0715 ∗ 2500 = 2500 + 1135 − 178.75

𝑅1 =  2100 + 0.0715 ∗ 2500 = 2100 + 178.75                                                                    
 

 

Now we get 𝑆1 = 44265, 𝐼1 = 3456.25 and 𝑅1 = 2278.75. Rounding these values, we get 

that at time 𝑡 = 1 the number of susceptible individuals is 44265, the number of infected 

individuals is 3456 and the number of recovered individuals is equal to 2279. In the same way, 

the values for day two can be calculated. 

𝑆′𝑡 =  −𝛼𝑆𝑡𝐼𝑡                     

𝐼′𝑡
 

=  𝛼𝑆𝑡𝐼𝑡 −  𝛽𝐼𝑡             

𝑅′𝑡
 

=  𝛽𝐼𝑡                             

 

 

𝑆𝑡 =  𝑆𝑡−1 + 𝑆′𝑡−1                     

𝐼𝑡
 =  𝐼𝑡−1 +  𝐼′𝑡−1                     

𝑅𝑡
 =  𝑅𝑡−1 +  𝑅′𝑡−1                    

 

 

𝑆′𝑡
 

=  −(0.00001)𝑆𝑡𝐼𝑡                     

𝐼′ 
𝑡 = (0.00001)𝑆𝑡𝐼𝑡 − (0.0715)𝐼𝑡 

𝑅′ 
𝑡 = (0.0715)𝐼𝑡                                  

were 𝑡 is given in days. 
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{

𝑆2 =  𝑆1 + 𝑆′1 = 44265 − 0.00001𝑆1𝐼1                   

𝐼2 =  𝐼1 + 𝐼′1 = 3456 + 0.00001𝑆1𝐼1 − 0.0715𝐼1

𝑅2 =  𝑅1 + 𝑅′1 = 2279 + 0.0715𝐼1                            

 = 

 

{

𝑆2 =  44265 − 0.00001 ∗ 44265 ∗ 3456 = 44265 − 1529.7984                                              
𝐼2 = 3456 + 0.00001 ∗ 44265 ∗ 3456 − 0.0715 ∗ 3456 = 3456 + 1529.7984 − 247.104
𝑅2 =  2279 + 0.0715 ∗ 3456 = 2279 + 247.104                                                                              

 

 

After rounding we get the following values: we get 𝑆2 = 42735, 𝐼2 = 4739 and 𝑅2 = 2526. 

These values are then used to calculate the situation for the third day. 

 

{

𝑆3 =  𝑆2 + 𝑆′2 = 42735 − 0.00001𝑆2𝐼2                   

𝐼3 =  𝐼2 + 𝐼′2 = 4739 + 0.00001𝑆2𝐼2 − 0.0715𝐼2

𝑅3 =  𝑅2 + 𝑅′2 = 2526 + 0.0715𝐼2                            

 = 

 

{

𝑆3 =  42735 − 0.00001 ∗ 42735 ∗ 4739 = 42735 − 2025.21165                                              
𝐼3 = 4739 + 0.00001 ∗ 42735 ∗ 4739 − 0.0715 ∗ 4739 = 4739 + 2025.21165 − 338.8385

𝑅3 =  2526 + 0.0715 ∗ 4739 = 2526 + 338.8385                                                                    
 

 

After rounding we get the following values: we get 𝑆3 = 40710, 𝐼3 = 6425 and 𝑅3 = 2865. 

It should be noted that for all three days, the number of people for each compartment sums up to 

the population. The next section gives a brief overview of stochastic compartmental models. 
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1.2 Stochastic models 
 

 

A stochastic process is a sequence of variables. These variables represent events whose 

outcome happen by chance. For instance, if some dice is tossed 6 times, then the stochastic 

process is the collection of the outcome for each of the 6 throws. So, a stochastic process 𝑋 =
{𝑋𝑡, 𝑡 ∈ 𝑇} is a collection of random variables. The time is given by 𝑡 and 𝑋(𝑡) is the outcome of 

the process at time 𝑡.  

 

Stochastic processes can be discrete or continuous time processes. If a process is a 

continuous time process, then it means that the time 𝑡 can be any positive real number. The 

process then looks like 𝑋 = {𝑋𝑡, 𝑡 ≥ 0}. An example a of continuous time processes is the 

intermediate arrival time of clients of a department store in minutes (2.4, 5, 0.75, 4.25, etc.).   

 

In a discrete time process the time is given by any positive natural number. The process is 

observed during discreet time periods. In this process 𝑋 = {𝑋𝑡, 𝑡 = 0, 1, 2, … } the time can 

represent any discrete period (hours, days, months, years, etc.). In this thesis the COVID-19 

pandemic was described as a discrete time stochastic process because it was observed daily. The 

possible outcomes of a discrete time stochastic process are called states. The jump from state 𝑋𝑡 

to state 𝑋𝑡−1 is called a transition. 

 

The probability of transitioning between the possible states within a discrete time stochastic 

process is called a transition probability. The collection of all these probabilities can be written in 

a matrix transition probability matrix. 

 

In general, discrete time stochastic processes that have 𝑠 states, have an 𝑠 × 𝑠 transition 

probability matrix: 

 

 

 

   (1.2.1) 

 

 

 

 

 Where the probabilities 𝑝𝑖,𝑗 have the following properties: 

  

 

 (1.2.2) 

 

 

 

The probability 𝑝𝑖,𝑗 is the probability that if the system is in state 𝑖 at time 𝑡, it will be in 

state 𝑗 at time 𝑡 + 1. If a state is equal to 𝑖 at time 𝑡, the process must be in one of the states 

within the system at time 𝑡 + 1. Hence every probability 𝑝𝑖,𝑗 is either equal to 0 or a positive 

𝑝1,1 𝑝1,2 ………… 𝑝1,𝑠  

𝑝2,1 𝑝2,2 ………… 𝑝2,𝑠  

: :  :  

: :  :  

: :  :  

𝑝𝑠,1 𝑝𝑠,2 ………… 𝑝𝑠,𝑠  

  (i) 𝑝𝑖,𝑗 = 𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖): the probability for the transition  𝑖 to 𝑗 

       from time 𝑡 to 𝑡 + 1. 

 (ii) 0 ≤ 𝑝𝑖,𝑗 ≤ 1, ∀ 𝑖, 𝑗 ∈  𝒮, the set containing all the states. 

(iii) ∑ 𝑝𝑖,𝑗𝑗∈𝒮 = 1, ∀𝑖 ∈ 𝒮 
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number between 0 and 1. Also all the probabilities in each row must sum up to 1 (Winston, 

2004).  

 

The transition probability matrix shown above can be used to calculate the likelihood that a 

process will be in a certain state at the next period. Suppose that we would be interested in 

knowing in what state a process would be after 𝑛 periods and the transition probability matrix is 

defined as 𝑃 then we would have to construct 𝑃 (𝑛). This matrix has the following properties: 

 

 

 

          (1.2.3) 

 

 

 

The transition probability matrix can be used to answer different kinds of questions. The 

transition probability matrix in its original form can tell us how likely it is that a system in a 

certain state will be in another state after one period. Given a quantity of elements in each state, 

it can also tell us the number of elements one could expect in each state after one period. To 

further explain this, we will present an example.  

 

Consider a system with the states 𝒮 = {𝑋, 𝑌} and a transition probability matrix P: 

 

 

 

 

This transition probability matrix in this form gives us the following information: Given that 

the system is currently (𝑡 = 0) in state 𝑋, the probability that the system will be in state 𝑌 at the 

next period (𝑡 = 1) is equal to 0.7. 

 

If we would like to know how the probability distribution will be after 3 periods, i.e., how 

will the transition probabilities look at time 𝑡 = 3, then we will have to calculate (𝑃)3. This is 

done in the following manner: 

 

(𝑃)3 =  [
0.3 0.7
0.8 0.2

]
3

= [
0.3 0.7
0.8 0.2

] [
0.3 0.7
0.8 0.2

] [
0.3 0.7
0.8 0.2

] = 

[
0.3 0.7
0.8 0.2

]
2

[
0.3 0.7
0.8 0.2

] =  [
0.65 0.35
0.4 0.6

]
 

[
0.3 0.7
0.8 0.2

]
 

 

  

Now we end up with (𝑃)3 = [
0.475 0.525

0.6 0.4
]. Before we continue, it should be noted that 

properties           (1.2.3) (iii) and (vi) are true for the matrix (𝑃)3. The matrix (𝑃)3 gives us the 

following information: If an element within the system starts in state 𝑌 at time 𝑡 = 0, there is 

40% chance that it will still be in state 𝑌 after 3 periods i.e., at time 𝑡 = 3. 

 

  (i) 𝑃 (𝑛) = (𝑃)𝑛  

 (ii) 𝑝𝑛
𝑖,𝑗

= 𝑃(𝑋𝑡+𝑛 = 𝑗|𝑋𝑡 = 𝑖): the probability that the process will 

       be in state 𝑗 after 𝑛 periods, given that it was in state 𝑖 at time 𝑡. 

(iii) 0 ≤ 𝑝𝑛
𝑖,𝑗

≤ 1, ∀ 𝑖, 𝑗 ∈  𝒮, the set containing all the states. 

(vi) ∑ 𝑝𝑛
𝑖,𝑗𝑗∈𝒮 = 1, ∀𝑖 ∈ 𝒮 

 𝑿 𝒀 

𝑿 0.3 0.7 

 𝒀 0.8 0.2 

 𝑿 𝒀 

𝑿 𝑝𝑋,𝑋 𝑝𝑋,𝑌 

𝒀 𝑝𝑌,𝑋 𝑝𝑌,𝑌 
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Given the information that at 𝑡 = 0 there are 120 elements in state 𝑋 (𝑋0 = 120) and 180 

elements in state 𝑌 (𝑌0 = 180), we can use this information in combination with the transition 

probability matrix to predict the number of elements in each state after 1 period (𝑋1and 𝑌1). The 

values for 𝑋0 and 𝑌0 are called the initial condition. 𝑋1 will consist of a portion of the elements 

from 𝑋0 that stay in 𝑋 and a portion of the elements of 𝑌0 that transition to 𝑋. So 

 𝑋1 = 𝑝𝑋,𝑋𝑋0 + 𝑝𝑌,𝑋𝑌0. 𝑌1 will consist of a portion of the elements from 𝑌0 that stay in 𝑌 and a 

portion of the elements of 𝑋0 that transition to 𝑌. So 𝑌1 = 𝑝𝑋,𝑌𝑋0 + 𝑝𝑌,𝑌𝑌0. 

 

Putting these two formulas together we get: 

𝑋1 = 𝑝𝑋,𝑋𝑋0 + 𝑝𝑌,𝑋𝑌0 

𝑌1 = 𝑝𝑋,𝑌𝑋0 + 𝑝𝑌,𝑌𝑌0 

 

If we write these equations as the result of matrix calculations, we get: 

[
𝑋1

𝑌1
] = [

𝑝𝑋,𝑋𝑋0 + 𝑝𝑌,𝑋𝑌0

𝑝𝑋,𝑌𝑋0 + 𝑝𝑌,𝑌𝑌0
] = [

𝑝𝑋,𝑋 𝑝𝑌,𝑋

𝑝𝑋,𝑌 𝑝𝑌,𝑌
] [

𝑋0

𝑌0
] = [

𝑝𝑋,𝑋 𝑝𝑋,𝑌

𝑝𝑌,𝑋 𝑝𝑌,𝑌
]

𝑇

[
𝑋0

𝑌0
] = 𝑃𝑇 [

𝑋0

𝑌0
] 

 

This gives us the formula for calculating 𝑋1and 𝑌1 and using these gives us the following result: 

[
𝑋1

𝑌1
] = 𝑃𝑇 [

𝑋0

𝑌0
] =  [

0.3 0.7
0.8 0.2

]
𝑇

[
120
180

] = [
0.3 0.8
0.7 0.2

] [
120
180

]
 

= [
180
120

] 

 

These results tell us that if at time 𝑡 = 0  𝑋 has 120 elements and  𝑌 has 180 elements, we can 

estimate that at time 𝑡 = 1, 𝑋 will have 180 elements and 𝑌 120 elements.  

 

This example is a small representation of how the model in this thesis will operate. Now that 

we have given a brief overview of stochastic compartmental models, in the next chapter we will 

discuss the data used and the method used in cleaning the data used for the models.   
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2 Data 
 

 

The data used in this research was observed from August 1st to September 30th, 2020. This 

choice was made because acquiring the necessary data directly from the COVID-19 management 

team had proven difficult. And since attempts at contacting the team were unsuccessful, we had 

to retrieve data from the Suriname COVID-19 website. Before August 1st, 2020, the website did 

not show detailed data concerning the COVID-19 numbers in Suriname, which is why we did not 

start our data collection before this time. By the time the management team had published more 

detailed data on the website, we were well within the month of July, so we decided to start data 

collection on August 1st. The data from August 1st to August 30st was used to train the model and 

the remaining data from September was used to test the model. 

 

From August 1st of 2020 to September 30th of 2020 COVID-19 data was retrieved every day 

from the Suriname COVID-19 website. The retrieved data consisted of the categories: new 

positive cases over the last 24 hours, new deceased cases over the last 24 hours, new recovered 

cases over the last 24 hours, total number of positive cases, total number of deceased cases, total 

number of recovered cases, number of positive cases in isolation, number of positive cases in the 

nursing ward, number of positive cases in the ICU and the number of active cases. According to 

the General Bureau of Statistics of Suriname as of July 2018, the estimated year population of 

Suriname was equal to 590100. At the time of writing this was the most recent population 

estimate, hence we assumed this number to be a good approximation to the actual population 

total. The susceptible category was calculated using the population number retrieved from this 

report. This data was defined using the following variables:   

 

 

 

 

 

 

 

          (2.1) 

 

 

 

 

 

 

 

The collected data can be viewed in the tables on the next page. 

 

 

 

 

- 𝑆 : The group of individuals who are susceptible to the disease. 

- 𝐽 : The infected individuals who show minimal to no symptoms. 

- 𝑁: The infected individuals admitted to the nursing ward. 

- 𝐶 : This group consist of infected individuals admitted to the ICU. 

- 𝐺 : The total number of the people who recovered from the disease. 

-∆𝐺: The number of newly recovered individuals. 

- 𝐷 : Deceased. The total number of people who died from the disease. 

-∆𝐷: The number of newly deceased individuals. 

- 𝑃: The total number of positive cases. 

-∆𝑃:The number of newly tested positive individuals. 

- 𝐴: The number of active cases. 

- 𝑡 : The time in days with 𝑡 = 0 equivalent to August 1st, 2020. 
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(2.2) Observed COVID-19 data. 

𝒕 Date ∆𝑷 𝑷 ∆𝑫 𝑫 𝑨 ∆𝑮 𝑮 𝑪 𝑵 𝑱 
0 01-08 54 1760 0 26 573 43 1161 12 88 561 
1 02-08 89 1849 1 27 622 33 1194 15 80 613 
2 03-08 44 1893 0 27 639 32 1227 12 71 556 
3 04-08 88 1981 0 27 676 51 1278 10 90 576 
4 05-08 69 2050 0 27 696 49 1327 13 88 595 
5 06-08 46 2096 2 29 621 119 1446 9 91 521 
6 07-08 107 2203 0 29 669 59 1505 12 99 558 
7 08-08 103 2306 0 29 719 54 1558 7 82 630 
8 09-08 85 2391 0 29 727 77 1635 13 82 632 
9 10-08 98 2489 2 31 785 39 1674 13 90 682 
10 11-08 70 2559 8 39 808 38 1712 14 116 678 
11 12-08 94 2653 0 39 825 77 1789 15 118 692 
12 13-08 108 2761 1 40 891 41 1830 12 120 759 
13 14-08 77 2838 1 41 893 64 1894 15 153 735 
14 15-08 123 2961 1 42 929 102 1990 15 132 820 
15 16-08 55 3016 5 47 933 67 2063 11 116 852 
16 17-08 61 3077 1 48 892 118 2138 13 132 776 
17 18-08 139 3216 6 54 966 63 2196 13 126 859 
18 19-08 79 3295 0 54 1014 43 2239 17 143 910 
19 20-08 71 3366 1 55 928 169 2383 19 129 832 
20 21-08 94 3460 1 56 908 38 2498 20 188 752 
21 22-08 109 3569 1 57 951 61 2559 20 210 777 
22 23-08 38 3607 1 58 876 114 2673 20 145 711 
23 24-08 25 3632 2 60 814 70 2758 21 190 638 
24 25-08 66 3698 1 61 819 60 2818 20 166 655 
25 26-08 26 3724 1 62 799 44 2862 23 165 635 
26 27-08 69 3793 4 66 834 30 2893 23 133 702 
27 28-08 55 3848 0 66 811 31 2971 24 157 660 
28 29-08 106 3954 1 67 896 20 2991 24 173 734 
29 30-08 55 4009 0 67 869 82 3073 23 158 718 
30 31-08 25 4034 4 71 823 67 3140 18 145 634 
31 01-09 55 4089 1 72 846 27 3167 19 153 703 
32 02-09 60 4149 0 72 805 106 3273 19 114 712 
33 03-09 66 4215 1 73 824 46 3319 17 112 746 
34 04-09 37 4252 2 75 811 48 3367 17 120 718 
35 05-09 68 4320 1 76 818 60 3426 15 120 723 
36 06-09 26 4346 9 85 767 68 3494 12 116 674 
37 07-09 14 4360 6 91 725 50 3544 8 108 635 
38 08-09 59 4419 0 91 733 51 3595 9 106 640 
39 09-09 28 4447 1 92 722 38 3633 8 107 626 
40 10-09 30 4477 1 93 678 73 3706 9 73 589 
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(2.3) Observed COVID-19 data (continued). 

𝒕 Date ∆𝑷 𝑷 ∆𝑫 𝑫 𝑨 ∆𝑮 𝑮 𝑪 𝑵 𝑱 
41 11-09 52 4529 0 93 689 41 3747 8 89 610 
42 12-09 50 4579 0 93 698 41 3788 7 93 613 
43 13-09 3 4582 0 93 639 62 3850 7 99 548 
44 14-09 29 4611 2 95 571 85 3935 9 85 489 
45 15-09 14 4625 0 95 534 61 3996 7 69 472 
46 16-09 20 4645 0 95 461 92 4089 7 54 414 
47 17-09 26 4671 0 95 416 71 4160 7 57 364 
48 18-09 20 4691 1 96 315 120 4280 7 65 282 
49 19-09 18 4709 1 97 229 78 4383 7 66 181 
50 20-09 14 4723 0 97 138 105 4488 6 66 96 
51 21-09 17 4740 0 97 118 37 4525 4 22 49 
52 22-09 19 4759 3 100 118 16 4541 4 60 64 
53 23-09 20 4779 1 101 118 19 4560 5 54 71 
54 24-09 10 4789 1 102 109 18 4578 5 66 76 
55 25-09 28 4817 0 102 119 18 4596 6 58 72 
56 26-09 14 4831 0 102 109 24 4620 4 44 51 
57 27-09 4 4835 0 102 72 41 4661 6 39 42 
58 28-09 1 4836 0 102 67 6 4667 7 31 41 
59 29-09 27 4863 2 104 83 8 4675 5 33 37 
60 30-09 14 4877 0 104 78 12 4695 5 44 31 

 

To validate this data, we made some assumptions based on news reports about the data we 

collected and then checked to see whether the collected data was in accordance with the 

assumptions. The assumptions were: 

   
  

            

           (2.4) 

 

 

The first equation addresses the assumption that the sum of the cases in isolation, the cases 

in the nursing ward and the ICU is equal to the number of active cases. The second equation 

describes the composition of the total number of positive cases. While checking the data with the 

calculations above we discovered that the data was not accurate. The reason for the inconsistency 

was not reported in the media, but we believe that this could be due to an error during the data 

entry process. After seeing that the data was not accurate, we started the data cleaning process.  

 

It was reported in the media that the COVID-19 management team had lost contact with 

several people in isolation which led us to assume that the reported number of isolated cases 

could be incorrect. We also assumed that the data concerning the ICU and the nursing ward were 

correct, because these numbers were reported by the hospital staff and the chance of these 

numbers being accurate was greater than the chance of them being incorrect. Since the data 

concerning the new positive cases, the total positive cases, the new deceased cases, and the total 

  (i) 𝐴𝑡 = 𝐽𝑡 + 𝑁𝑡 + 𝐶𝑡  at any time; 𝑡 = 0,1,2, … ,60  

(ii) 𝑃𝑡 = 𝐺𝑡 + 𝐷𝑡 + 𝐴𝑡 at any time; 𝑡 = 0,1,2, … ,60 



17 
 

number of deceased cases were accurate we assumed that they were correct. We also assumed 

that the number of active cases is correct. The numbers for the remaining categories were 

corrected using these assumptions and the following formulas:  

 

 

 

  (2.5) 

 

 

 

 

The first equation uses the active cases, the cases in the hospital nursing ward and the ICU 

to calculate the number of cases in isolation at any given time. The second equation uses the total 

number of the total number of positive cases, the total number of deceased cases and the active 

cases to calculate the total number of recovered cases. The third equation calculates the newly 

recovered cases. The fourth equation calculates the number of susceptible individuals at any 

time. The data cleaning calculations were done using Microsoft excel. After cleaning up the data, 

we came up with the following dataset: 

 

(2.6) Corrected COVID-19 data. 

𝒕 Date 𝑺* ∆𝑷 𝑷 ∆𝑫 𝑫 𝑨 ∆𝑮 𝑮 𝑪 𝑵 𝑱 
0 01-08 588340 54 1760 0 26 573 0 1161 12 88 473 

1 02-08 588251 89 1849 1 27 622 39 1200 15 80 527 

2 03-08 588207 44 1893 0 27 639 27 1227 12 71 556 

3 04-08 588119 88 1981 0 27 676 51 1278 10 90 576 

4 05-08 588050 69 2050 0 27 696 49 1327 13 88 595 

5 06-08 588004 46 2096 2 29 621 119 1446 9 91 521 

6 07-08 587897 107 2203 0 29 669 59 1505 12 99 558 

7 08-08 587794 103 2306 0 29 719 53 1558 7 82 630 

8 09-08 587709 85 2391 0 29 727 77 1635 13 82 632 

9 10-08 587611 98 2489 2 31 785 38 1673 13 90 682 

10 11-08 587541 70 2559 8 39 808 39 1712 14 116 678 

11 12-08 587447 94 2653 0 39 825 77 1789 15 118 692 

12 13-08 587339 108 2761 1 40 891 41 1830 12 120 759 

13 14-08 587262 77 2838 1 41 893 74 1904 15 153 725 

14 15-08 587139 123 2961 1 42 929 86 1990 15 132 782 

15 16-08 587084 55 3016 5 47 933 46 2036 11 116 806 

16 17-08 587023 61 3077 1 48 892 101 2137 13 132 747 

17 18-08 586884 139 3216 6 54 966 59 2196 13 126 827 

18 19-08 586805 79 3295 0 54 1014 31 2227 17 143 854 

19 20-08 586734 71 3366 1 55 928 156 2383 19 129 780 

20 21-08 586640 94 3460 1 56 908 113 2496 20 188 700 

21 22-08 586531 109 3569 1 57 951 65 2561 20 210 721 

* This data field was calculated using  (2.5) and added to the dataset. 

    These values have been corrected. 

  (i)  𝐽𝑡 = 𝐴𝑡 − 𝐶𝑡 − 𝑁𝑡 ; 𝑡 = 0 … 30 

 (ii) 𝐺𝑡 = 𝑃𝑡 − 𝐷𝑡 − 𝐴𝑡 ; 𝑡 = 0 … 30 

(iii) ∆𝐺𝑡 = 𝐺𝑡 − 𝐺𝑡−1   ; 𝑡 = 1 … 30 

(iv)  𝑆𝑡 = 590100 −  𝑃𝑡 ; 𝑡 = 0 … 30 
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(2.7) Corrected COVID-19 data. 

𝒕 Date 𝑺* ∆𝑷 𝑷 ∆𝑫 𝑫 𝑨 ∆𝑮 𝑮 𝑪 𝑵 𝑱 
22 23-08 586493 38 3607 1 58 876 112 2673 20 145 711 

23 24-08 586468 25 3632 2 60 814 85 2758 21 190 603 

24 25-08 586402 66 3698 1 61 819 60 2818 20 166 633 
25 26-08 586376 26 3724 1 62 799 45 2863 23 165 611 
26 27-08 586307 69 3793 4 66 834 30 2893 23 133 678 
27 28-08 586252 55 3848 0 66 811 78 2971 24 157 630 
28 29-08 586146 106 3954 1 67 896 20 2991 24 173 699 
29 30-08 586091 55 4009 0 67 869 82 3073 23 158 688 
30 31-08 586066 25 4034 4 71 823 67 3140 18 145 660 
31 01-09 586011 55 4089 1 72 846 31 3171 19 153 674 

32 02-09 585951 60 4149 0 72 805 101 3272 19 114 672 

33 03-09 585885 66 4215 1 73 824 46 3318 17 112 695 

34 04-09 585848 37 4252 2 75 811 48 3366 17 120 674 

35 05-09 585780 68 4320 1 76 818 60 3426 15 120 683 

36 06-09 585754 26 4346 9 85 767 68 3494 12 116 639 

37 07-09 585740 14 4360 6 91 725 50 3544 8 108 609 

38 08-09 585681 59 4419 0 91 733 51 3595 9 106 618 

39 09-09 585653 28 4447 1 92 722 38 3633 8 107 607 

40 10-09 585623 30 4477 1 93 678 73 3706 9 73 596 

41 11-09 585571 52 4529 0 93 689 41 3747 8 89 592 

42 12-09 585521 50 4579 0 93 698 41 3788 7 93 598 

43 13-09 585518 3 4582 0 93 639 62 3850 7 99 533 

44 14-09 585489 29 4611 2 95 571 95 3945 9 85 477 

45 15-09 585475 14 4625 0 95 534 51 3996 7 69 458 

46 16-09 585455 20 4645 0 95 461 93 4089 7 54 400 

47 17-09 585429 26 4671 0 95 416 71 4160 7 57 352 

48 18-09 585409 20 4691 1 96 315 120 4280 7 65 243 

49 19-09 585391 18 4709 1 97 229 103 4383 7 66 156 

50 20-09 585377 14 4723 0 97 138 105 4488 6 66 66 

51 21-09 585360 17 4740 0 97 118 37 4525 4 22 92 

52 22-09 585341 19 4759 3 100 118 16 4541 4 60 54 

53 23-09 585321 20 4779 1 101 118 19 4560 5 54 59 

54 24-09 585311 10 4789 1 102 109 18 4578 5 66 38 

55 25-09 585283 28 4817 0 102 119 18 4596 6 58 55 

56 26-09 585269 14 4831 0 102 109 24 4620 4 44 61 

57 27-09 585265 4 4835 0 102 72 41 4661 6 39 27 

58 28-09 585264 1 4836 0 102 67 6 4667 7 31 29 

59 29-09 585237 27 4863 2 104 83 9 4676 5 33 45 

60 30-09 585223 14 4877 0 104 78 19 4695 5 44 29 

* This data field was calculated using  (2.5) and added to the dataset. 

    These values have been corrected. 

After cleaning up the data, we continued with the construction of the models which we 

present in the next chapter.   
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3 The Model  
 

 

After cleaning up the data, we started with the construction of the mathematical model. The 

first step was defining the compartments. We used the 𝑆, 𝐼 and 𝑅 compartments for this disease. 

These compartments are defined as follows:  

 

 

 (3.1) 

 

 

 

 

The compartments in our model had the following composition: 

 

 

 (3.2) 

 

 

 

Using these new compartment definitions, we preceded to the next step in constructing the 

model. We constructed a compartmental model with differential equations and a stochastic 

compartmental model for this disease. The results from both models were then compared to see 

whether the results from the stochastic compartmental model approximated the observed values 

as well as the results from the differential equations. The first section of this chapter focusses on 

the model based on a system of differential equations.  

 

 

  

- 𝑆 : The individuals who are susceptible to the disease. 

- 𝐼 :  The individuals who were infected i.e., the individuals in the 

         hospital nursing ward and the ICU and in isolation  

- 𝑅:  The individuals who have been removed i.e., the individuals who 

         died from the disease and the individuals who recovered. 

  (i)  𝑆𝑡 = 𝑆𝑡              ; 𝑡 = 0 … 60 

 (ii) 𝐼𝑡 = 𝐴𝑡               ; 𝑡 = 0 … 60 

(iii) 𝑅𝑡 = 𝐺𝑡 + 𝐷𝑡      ; 𝑡 = 1 … 60 
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3.1 Compartmental model based on a system of differential 

equations 
 

 

The first model we constructed was the model based on a system of differential equations. 

For this model we used the same methods and assumptions as discussed earlier in section 1.1. 

Some of these assumptions were adjusted to fit our disease. Our model operated under the 

following assumption: 
 

 

 

      (3.1.1) 

 

 

 

The reason we removed the assumption (iv) of (1.1.1) from our model is because the disease 

that our model is based on is fatal. And our removed category is comprised of recovered and 

diseased individuals. Taking these assumptions into a count, our general model becomes: 
 

 

      (3.1.2) 

 

 

 

 

With initial condition 𝑆0, 𝐼0 and 𝑅0. 𝑆𝑡 denotes the number of susceptible individuals at time 

t. 𝐼𝑡 denotes the number of infected individuals at time 𝑡. 𝑅𝑡 denotes the number of removed 

individuals at time 𝑡. 𝑆′𝑡denotes the change within the susceptible group from time 𝑡 − 1 to 𝑡, 

i.e., the number of new infections per time unit. 𝐼′𝑡 denotes the change within the infective group 

from time 𝑡 − 1  to 𝑡; 𝑅′𝑡 denotes the change within the removed group from time 𝑡 − 1 to 𝑡 i.e., 

the rate of recovery per time unit. 𝑡 is the time given in days, 𝛼 denotes the transmission rate and 

𝛽 denotes the recovery rate. The transmission rate 𝛼 and the recovery rate 𝛽 are unknown at this 

point and must be estimated. To estimate these, we used the formulas in (3.1.2) and the corrected 

data from chapter 2. Deriving the formula for estimating these parameters was done in the 

following way. 

 

(i) The rate of new infections, α𝑆𝑡𝐼𝑡 is given by mass action 

      incidence. 

 (ii) At a rate of β𝐼𝑡, infected leave the infective group and go to the 

       removed group. In this case the removed group consists of  

       recovered and deceased individuals. 

(iii) 𝑁 remains constant i.e., there is no entry into or departure from 

       the population.  

𝑆′𝑡 =  −𝛼𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  𝛼𝑆𝑡𝐼𝑡 −  𝛽𝐼𝑡       

𝑅′
𝑡

 
=  𝛽𝐼𝑡                       

 

𝑆𝑡 =  𝑆𝑡−1 + 𝑆′𝑡−1                  

𝐼𝑡
 =  𝐼𝑡−1 +  𝐼′𝑡−1                   

𝑅𝑡
 =  𝑅𝑡−1 +  𝑅′𝑡−1                
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Derivation of 𝜶 

 

 

 

 

 

 

 

 

Derivation of 𝜷 

𝑅𝑖 is the number of removed individuals at time 𝑡 = 𝑖.  

𝑅′𝑖−1 = (𝑅𝑖 − 𝑅𝑖−1) is the change within the 𝑅 category from time  

𝑖 − 1  to 𝑖. Using the third formula in (3.1.2) we get the equality: 

 𝛽𝐼𝑖−1 = (𝑅𝑖 − 𝑅𝑖−1). From this equality we can estimate the recovery 

rate 𝛽𝑖 from time 𝑖 − 1 to  𝑖  by 𝛽𝑖 =
(𝑅𝑖−𝑅𝑖−1)

𝐼𝑖−1
. If we assume that the 

recovery rate 𝛽 can be approximated  with the average of 𝛽𝑖, we get 

that  𝛽 =
∑ 𝛽𝑖

𝑘
𝑖=1

𝑘
. 

 

After deriving transmission and recovery rate, the next step was finding out how the model 

would operate. The calculations for estimating the rates depended on the average of the daily 

rates. The next challenge was to determine the length of the time interval needed to calculate 

average rates. To determine this, we looked at 3 lengths: 30 days, 14 days, and 7 days. We 

calculated the rates and the fitted values for each length. In the next three subsections we present 

the models for each of the different lengths. Before we do this, we define the following variables 

for both the stochastic model and the model based on differential equations: 
                                                                                                                                               

 

                    (3.1.3) 

 

 

 

 

And the corresponding calculations: 
                                                                                                                                                              

(3.1.4) 

 

𝑆𝑖 is the number of susceptible individuals at time 𝑡 = 𝑖.  

𝑆′𝑖−1 = (𝑆𝑖 − 𝑆𝑖−1) is the change within the 𝑆 category from time  

𝑖 − 1  to 𝑖. Using the first formula in (3.1.2) we get the equality: 

 −𝛼𝑆𝑖−1𝐼𝑖−1 = (𝑆𝑖 − 𝑆𝑖−1). From this equality we can estimate the 

transmission rate 𝛼𝑖 from time 𝑖 − 1 to  𝑖  by 𝛼𝑖 =
−(𝑆𝑖−𝑆𝑖−1)

𝑆𝑖−1𝐼𝑖−1
. If we 

assume that the transmission rate 𝛼 can be approximated  with the 

average of 𝛼𝑖, we get that  𝛼 =
∑ 𝛼𝑖

𝑘
𝑖=1

𝑘
. 

- 𝑆𝑓 : The fitted values for the 𝑆 compartment. 

- 𝐼𝑓  : The fitted values for the 𝐼 compartment.  

- 𝑅𝑓 : The fitted values for the 𝑅 compartment. 

- 𝑆𝑒 : The absolute error terms for the 𝑆 compartment. 

- 𝐼𝑒  : The absolute error terms for the 𝐼 compartment.  

- 𝑅𝑒 : The absolute error terms for the 𝑅 compartment. 

- 𝑆𝑒𝑖 =  𝑆𝑖 − 𝑆𝑓𝑖, 𝑖 = 0,1,2, … ,30 

- 𝐼𝑒𝑖 =  𝐼𝑖 − 𝐼𝑓𝑖, 𝑖 = 0,1,2, … ,30 

- 𝑅𝑒𝑖 =  𝑅𝑖 − 𝑅𝑓𝑖, 𝑖 = 0,1,2, … ,30 
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Now that we defined a few new variables, and we can start with the first version of the 

model. Every calculation done in the remaining parts of this chapter was done using Python 

programming language. The script for these calculations can be viewed in appendix B.  

 

3.1.1 Differential Model version 1 (30-day average) 
 

The first version of our model calculated the rates using a length of 30 days. In this case we 

took  

 

      (3.1.5) 

 

These calculations resulted in the following system of differential equations: 
 

 

𝑆′𝑡 =  −(1.59 × 10−7)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (1.59 × 10−7)𝑆𝑡𝐼𝑡 −  0.08𝐼𝑡 

𝑅′
𝑡

 
=  0.08𝐼𝑡                                         

 

 

After constructing this system, we used it to calculate the fitted values for each compartment 

with the initial condition equal to the data observed on August 1st. We also calculated the error 

terms using (3.1.4). Calculating the fitted values was done using the last three formulas in (3.1.2) 

and the method in the example from section 1.1. 

 

3.1.2 Differential Model version 2 (14-day average) 
 

In our next version, we calculated the transition probability using a length of 14 days. Here 

we took  

 

 

(3.1.6) 

 

 

 

 

 

 

These calculations resulted in 3 different systems of differential equations, one for each 14-

day length part of the data. The system was calculated using only 2 data points. This, because 

𝛼𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
  ; 𝑡 ∈ (1,2, … ,30), 𝛼 =

∑ 𝛼𝑡
30
𝑡=1

30
  

𝛽𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (1,2, … ,30), 𝛽 =

∑ 𝛽𝑡
30
𝑡=1

30
  

𝛼(1)𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
  ; 𝑡 ∈ (1,2, … ,14), 𝛼(1) =

∑ 𝛼(1)𝑡
14
𝑡=1

14
  

𝛽(1)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (1,2, … ,14), 𝛽(1) =

∑ 𝛽(1)𝑡
14
𝑡=1

14
  

𝛼(2)𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
  ; 𝑡 ∈ (15,16, … ,28), 𝛼(2) =

∑ 𝛼(2)𝑡
28
𝑡=15

14
  

𝛽(2)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (15,16, … ,28), 𝛽(2) =

∑ 𝛽(2)𝑡
28
𝑡=15

14
  

𝛼(3)𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
; 𝑡 ∈ (29,30), 𝛼(3) =

∑ 𝛼(3)𝑡
30
𝑡=29

2
  

𝛽(3)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (29,30), 𝛽(3) =

∑ 𝛽(3)𝑡
30
𝑡=29

2
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these two data points were left after calculating the first two matrices. We got the following 

systems:  

 

System 1 = 

𝑆′𝑡 =  −(1.95 × 10−7)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (1.95 × 10−7)𝑆𝑡𝐼𝑡 −  0.08𝐼𝑡 

𝑅′
𝑡

 
=  0.08𝐼𝑡                                         

 

 

System 2 =  

𝑆′𝑡 =  −(1.34 × 10−7)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (1.34 × 10−7)𝑆𝑡𝐼𝑡 −  0.08𝐼𝑡 

𝑅′
𝑡

 
=  0.08𝐼𝑡                                         

 

 

System 3 = 

𝑆′𝑡 =  −(7.99 × 10−8)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (7.99 × 10−8)𝑆𝑡𝐼𝑡 −  0.09𝐼𝑡 

𝑅′
𝑡

 
=  0.09𝐼𝑡                                         

 

 

After estimating these systems, we calculated the fitted values for each compartment with 

the initial condition for system 1, 2 and 3 set to the data observed on August 1st, August 15th, and 

August 29th respectively.  

 

3.1.3 Differential Model version 3 (7-day average) 
 

The last version of the model we constructed, had rates that were calculated using an 

average of 7 days.  

 
 

 

 

 

 

(3.1.7) 

 

 

 

 

 

 

 

 

 

 

𝛼(1)𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
  ; 𝑡 ∈ (1,2, … ,7), 𝛼(1) =

∑ 𝛼(1)𝑡
7
𝑡=1

7
  

𝛽(1)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (1,2, … ,7), 𝛽(1) =

∑ 𝛽(1)𝑡
7
𝑡=1

7
  

𝛼(2)𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
  ; 𝑡 ∈ (8,9, … ,14), 𝛼(1) =

∑ 𝛼(2)𝑡
14
𝑡=8

7
  

𝛽(2)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (8,9, … ,14), 𝛽(1) =

∑ 𝛽(2)𝑡
14
𝑡=8

7
  

𝛼(3)𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
  ; 𝑡 ∈ (15,16, … ,21), 𝛼(1) =

∑ 𝛼(3)𝑡
21
𝑡=15

7
  

𝛽(3)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (15,16, … ,21), 𝛽(1) =

∑ 𝛽(3)𝑡
21
𝑡=15

7
  

𝛼(4)𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
  ; 𝑡 ∈ (22,23, … ,28), 𝛼(1) =

∑ 𝛼(4)𝑡
28
𝑡=22

7
  

𝛽(4)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (22,23, … ,28), 𝛽(1) =

∑ 𝛽(4)𝑡
28
𝑡=22

7
 

𝛼(5)𝑡 = 
−(𝑆𝑡−𝑆𝑡−1)

𝑆𝑡−1
  ; 𝑡 ∈ (29,30), 𝛼(1) =

∑ 𝛼(5)𝑡
30
𝑡=29

2
  

𝛽(5)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (29,30), 𝛽(1) =

∑ 𝛽(5)𝑡
30
𝑡=29

2
 



24 
 

These calculations resulted in 5 different systems of differential equations, one for each 7-

day length part of the data.  

 

System 1 = 

𝑆′𝑡 =  −(1.99 × 10−7)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (1.99 × 10−7)𝑆𝑡𝐼𝑡 −  0.09𝐼𝑡 

𝑅′
𝑡

 
=  0.09𝐼𝑡                                         

 

 

System 2 =  

𝑆′𝑡 =  −(1.9 × 10−7)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (1.9 × 10−7)𝑆𝑡𝐼𝑡 −  0.08𝐼𝑡 

𝑅′
𝑡

 
=  0.08𝐼𝑡                                         

 

 

System 3 = 

𝑆′𝑡 =  −(1.57 × 10−7)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (1.57 × 10−7)𝑆𝑡𝐼𝑡 −  0.09𝐼𝑡 

𝑅′
𝑡

 
=  0.09𝐼𝑡                                         

 

 

System 4 =  

𝑆′𝑡 =  −(1.11 × 10−7)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (1.11 × 10−7)𝑆𝑡𝐼𝑡 −  0.07𝐼𝑡 

𝑅′
𝑡

 
=  0.07𝐼𝑡                                         

 

 

System 5 = 

𝑆′𝑡 =  −(7.99 × 10−8)𝑆𝑡𝐼𝑡                

𝐼′𝑡
 

=  (7.99 × 10−8)𝑆𝑡𝐼𝑡 −  0.09𝐼𝑡 

𝑅′
𝑡

 
=  0.09𝐼𝑡                                         

 

After estimating these systems, we calculated the fitted values for each compartment with 

the initial condition for system 1, 2, 3, 4 and 5 set to the data observed on August 1st, August 8th, 

August 15th, August 22nd, and August 29th respectively. The next section presents the 

construction of the stochastic compartmental model.  
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3.2 Stochastic compartmental models 
 

 

The stochastic compartmental model we used is like the model developed in “Markov Chain 

Modeling of HIV, Tuberculosis, and Hepatitis B Transmission in Ghana” (Twumasi, Asiedu, & 

Nortey, 2019). In this article the writers developed a stochastic 𝑆𝐼𝑅 model for a few diseases. 

The most important difference between this model and our model is the method with which the 

transition probabilities were calculated. The method they used to calculate the transition 

probabilities is the maximum likelihood estimation. In our model we used a different method, 

which we explain in this section. Our model operated under the following assumptions: 

  

 

 

 

 

(3.2.1) 

 

 

 

 

 

 

 

 

These assumptions help make the model solvable. Without these assumptions the model 

could become too complex to solve. After the model is constructed, the assumptions can be 

adjusted to make the model more realistic. Taking these assumptions into count we get the 

following stochastic model: 

 

 

 

          

 

      (3.2.2)  

 

 

 

 

 

 

 

 

 

(i)   A susceptible individual can become infected or stay susceptible. 

(ii)  An infected individual can stay infected or move to the removed 

       group. 

(iii) A removed individual will always stay in the removed group. 

(iv) No one enters the population, i.e., there are no births and arrivals 

       from other countries.  

(v)  Besides the COVID-19 deceased individuals, no one leaves the 

       population, i.e., no one leaves the country or dies from 

       anything other than COVID-19. 

(vi) If the population is denoted by 𝑁 then 𝑁 = 𝑆 + 𝐼 + 𝑅 is constant  

       at any time 𝑡.  

- 𝑋 =  {𝑋𝑡, 𝑡 = 0, 1, 2, 3, … } the current state at time 𝑡. 

- 𝐸 = {𝑆, 𝐼, 𝑅 } the set containing all the possible states. 

- Probability transition matrix 𝑃; 𝑃𝑖,𝑗 = 𝑃{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖};  

0 ≤ 𝑃𝑖,𝑗 ≤ 1;∑ 𝑃𝑖,𝑗𝑗∈𝐸 = 1; 𝑖, 𝑗 ∈ 𝐸 

With the matrix  𝑃 becoming: 

 

 𝑺 𝑰 𝑹 

𝑺 1 − 𝑢 𝑢 0 

𝑰 0 1 − 𝑣 𝑣 

𝑹 0 0 1 

 

 

 

 

 

With  

𝑢 : the probability of transitioning from 𝑆 at time 𝑡, to 𝐼 at time 𝑡 + 1. 

𝑣 : the probability of transitioning from 𝐼 at time 𝑡, to 𝑅 at time 𝑡 + 1. 

1 − 𝑢 : the probability staying in 𝑆 from time 𝑡 to time 𝑡 + 1. 

1 − 𝑣 : the probability of staying in 𝐼 from time 𝑡 to time 𝑡 + 1. 
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Before moving on to the next step in the model construction, we will talk about the other 

elements in matrix 𝑃. The probabilities that are equal to 0 are a direct consequence of (3.2.1). 

The transitions with probabilities equal to 0, represent transitions that are not possible according 

to our assumptions. The transition with a probability equal to 1, means that once the system is in 

the state 𝑅 it will remain in this state. After defining the model, we derived the transition 

probabilities in the following way: 

Derivation of 𝒖 

 

 

 

 

 

 

 

 

 

 

 

 

 

Derivation of 𝒗 

𝑅𝑖 is the number of removed individuals at time 𝑡 = 𝑖 and 𝑅𝑗 at time 

𝑡 = 𝑗. From the assumptions made earlier in (3.2.1), we know that 

(𝑅𝑖 ≤ 𝑅𝑗) ∀ 𝑖, 𝑗 ∈ (0,1,2, … 60) ∧ 𝑖 ≤ 𝑗.  

(𝑅𝑗 − 𝑅𝑖) is the total number of individuals who moved from the 𝐼 

category to the 𝑅 category during the time interval 𝑖 to 𝑗.  

This follows from the assumptions made earlier in (3.2.1).  

The proportion of individuals who transitioned from 𝐼 to 𝑅 during this 

time interval is equal to 
𝑅𝑗−𝑅𝑖

𝐼𝑖
. 

We define 𝑣𝑖 as the number of individuals who transition from 𝐼 to 𝑅 

during the time interval 𝑖 − 1 to 𝑖 proportional to the number of 

individuals in 𝐼 at time 𝑡 − 1, so 𝑣𝑖 = 
𝑅𝑖−𝑅𝑖−1

𝐼𝑖−1
. 

If we assume that the transition probability from 𝐼 to 𝑅 (𝑣) can be 

approximated with the average of 𝑣𝑖, we get that 𝑣 =
∑ 𝑣𝑖

𝑘
𝑖=1

𝑘
. 

 

𝑆𝑖 is the number of susceptible individuals at time 𝑡 = 𝑖 and 𝑆𝑗  at time 

𝑡 = 𝑗. From the assumptions made earlier in (3.2.1), we know that 

(𝑆𝑖 ≥ 𝑆𝑗) ∀ 𝑖, 𝑗 ∈ (0,1,2, … 60) ∧ 𝑖 ≤ 𝑗. 

(𝑆𝑖 − 𝑆𝑗) is the total number of individuals who moved from the 𝑆 

category to the 𝐼 category during the time interval 𝑖 to 𝑗.  

This follows from the assumptions made earlier in (3.2.1).  

The proportion of individuals who transitioned from 𝑆 to 𝐼 during this 

time interval is equal to 
𝑆𝑖−𝑆𝑗

𝑆𝑖
. 

We define 𝑢𝑖 as the number of individuals who transitioned from 𝑆 to 

𝐼 during the time interval 𝑖 − 1 to 𝑖 proportional to the number of 

individuals in  𝑆 at time  𝑖 − 1, so 𝑢𝑖 = 
𝑆𝑖−1−𝑆𝑖

𝑆𝑖−1
. 

If we assume that the transition probability from 𝑆 to 𝐼 (𝑢) can be 

approximated with the average of 𝑢𝑖, we get that 𝑢 =
∑ 𝑢𝑖

𝑘
𝑖=1

𝑘
. 
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If you look at both derivations above, you can see that we only used the difference in the 𝑅 

and 𝑆 daily. The reason for doing this was because when we looked at the data, we saw that the 

𝑅 and 𝑆 increased and decreased in numbers, respectively. The reason why we did not use the 

daily difference of the 𝐼 compartment is because the numbers of this compartment both increased 

and decreased over time. Using the daily difference of this compartment would lead to negative 

transition probabilities, which is not allowed.  

 

After deriving the calculations to determine the transition probabilities, the next step was 

constructing the models. We used the same intervals we used earlier for the model with 

differential equations. In the next three subsections we present the model for each of the different 

lengths.  

 

3.2.1 Stochastic Model version 1 (30-day average) 
 

The first version of our model calculated the transition probability using a length of 30 days. 

In this case we took  

 

(3.2.3) 

 

These calculations resulted in the following matrix 𝑃: 
 

 

 

 

 

 

After estimating this probability transition matrix, we used it to calculate the fitted values 

for each compartment with the initial condition equal to the data observed on August 1st using 

(3.1.3). We also calculated the error terms using (3.1.4). Calculating the fitted values was done in 

the following way: 

 
 

 

 

 

 

 

After calculating the fitted values and the error terms, we compared the fitted values with 

the observed values to determine how well the model fitted to the observed values.  

 

 

 

𝑢𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (1,2, … ,30), 𝑢 =

∑ 𝑢𝑡
30
𝑡=1

30
  

𝑣𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (1,2, … ,30), 𝑣 =

∑ 𝑣𝑡
30
𝑡=1

30
  

 𝑺 𝑰 𝑹 

𝑺 0.99987 0.00013 0 

𝑰 0 0.91775 0.08225 

𝑹 0 0 1 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 1st. 

The fitted values then become: 

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃𝑡)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑡 = 1,2, … ,30 
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3.2.2 Stochastic Model version 2 (14-day average) 
 

In our next version, we calculated the transition probability using a length of 14 days. In this 

case we took  

 

 

 (3.2.4) 

 

 

 

 

 

 

These calculations resulted in 3 different transition probability matrices, one for each 14-day 

length part of the data. The last matrix was calculated using only 2 data points. This, because 

these two data points were left after calculating the first two matrices. We got the following 

matrices 𝑃(1), 𝑃(2) and 𝑃(3): 

 𝑃(1) 

 

 

 

 

     𝑃(2) 

 

 

 

 

 𝑃(3) 

 

 

 

 

After estimating these matrices, we calculated the fitted values for each compartment. 

Calculating the fitted values was done in the following way: 

 

𝑢(1)𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (1,2, … ,14), 𝑢(1) =

∑ 𝑢(1)𝑡
14
𝑡=1

14
  

𝑣(1)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (1,2, … ,14), 𝑣(1) =

∑ 𝑣(1)𝑡
14
𝑡=1

14
  

𝑢(2)𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (15,16, … ,28), 𝑢(2) =

∑ 𝑢(2)𝑡
28
𝑡=15

14
  

𝑣(2)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (15,16, … ,28), 𝑣(2) =

∑ 𝑣(2)𝑡
28
𝑡=15

14
  

𝑢(3)𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (29,30), 𝑢(3) =

∑ 𝑢(3)𝑡
30
𝑡=29

2
  

𝑣(3)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (29,30), 𝑣(3) =

∑ 𝑣(3)𝑡
30
𝑡=29

2
  

 𝑺 𝑰 𝑹 

𝑺 0.99985 0.00015 0 

𝑰 0 0.9169 0.0831 

𝑹 0 0 1 

 𝑺 𝑰 𝑹 

𝑺 0.99988 0.00012 0 

𝑰 0 0.91923 0.08077 

𝑹 0 0 1 

 𝑺 𝑰 𝑹 

𝑺 0.99993 0.00007 0 

𝑰 0 0.91923 0.08077 

𝑹 0 0 1 



29 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Just like in the previous subsection, we compared the fitted values with the observed values. 

 

3.2.3 Stochastic Model version 3 (7-day average) 
 

The last version of the model we constructed, had transition probabilities that were 

calculated using an average of 7 days.  

 
 

 

 

 

 

(3.2.5) 

 

 

 

 

 

 

 

 

 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 1st. 

The fitted values then become: 

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃(1)𝑡)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑡 = 1,2, … ,14 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 15th. 

The fitted values then become: 

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃(2)𝑖)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2, … ,14 and  𝑡 = 𝑖 + 14 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 29th. 

The fitted values then become: 

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃(3)𝑖)𝑇 [

𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2 and  𝑡 = 𝑖 + 28 

𝑢(1)𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (1,2, … ,7), 𝑢(1) =

∑ 𝑢(1)𝑡
7
𝑡=1

7
  

𝑣(1)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (1,2, … ,7), 𝑣(1) =

∑ 𝑣(1)𝑡
7
𝑡=1

7
  

𝑢(2)𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (8,9, … ,14), 𝑢(2) =

∑ 𝑢(2)𝑡
14
𝑡=8

7
  

𝑣(2)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (8,9, … ,14), 𝑣(2) =

∑ 𝑣(2)𝑡
14
𝑡=8

7
  

𝑢(3)𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (15,16, … ,21), 𝑢(3) =

∑ 𝑢(3)𝑡
21
𝑡=15

7
  

𝑣(3)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (15,16, … ,21), 𝑣(3) =

∑ 𝑣(3)𝑡
21
𝑡=15

7
  

𝑢(4)𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (22,23, … ,28), 𝑢(3) =

∑ 𝑢(4)𝑡
28
𝑡=22

7
  

𝑣(4)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (22,23, … ,28), 𝑣(3) =

∑ 𝑣(4)𝑡
28
𝑡=22

7
 

𝑢(5)𝑡 = 
𝑆𝑡−1−𝑆𝑡

𝑆𝑡−1
  ; 𝑡 ∈ (29,30), 𝑢(5) =

∑ 𝑢(5)𝑡
30
𝑡=29

2
  

𝑣(5)𝑡 = 
𝑅𝑡−𝑅𝑡−1

𝐼𝑡−1
 ; 𝑡 ∈ (29,30), 𝑣(5) =

∑ 𝑣(5)𝑡
30
𝑡=29

2
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These calculations resulted in 5 different transition probability matrices, one for each 7-day 

length part of the data. The last matrix was calculated using only two data points. This, because 

these two data points were left after calculating the first 4 matrices. We got the following 

matrices 𝑃(1), 𝑃(2), 𝑃(3), 𝑃(4)  and 𝑃(5): 

 

𝑃(1) 𝑺 𝑰 𝑹  𝑃(2) 𝑺 𝑰 𝑹 

𝑺 0.99987 0.00013 0  𝑺 0.99984 0.00016 0 

𝑰 0 0.91234 0.08766  𝑰 0 0.92146 0.07854 

𝑹 0 0 1  𝑹 0 0 1 

         

𝑃(3) 𝑺 𝑰 𝑹  𝑃(4) 𝑺 𝑰 𝑹 

𝑺 0.99985 0.00015 0  𝑺 0.99991 0.00009 0 

𝑰 0 0.91149 0.08851  𝑰 0 0.92697 0.07303 

𝑹 0 0 1  𝑹 0 0 1 

         

𝑃(5) 𝑺 𝑰 𝑹      

𝑺 0.99993 0.00007 0      

𝑰 0 0.91339 0.08661      

𝑹 0 0 1      

After estimating these matrices, we calculated the fitted values for each compartment. We 

also calculated the error terms. Calculating the fitted values was done in the following way: 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 1st. 

The fitted values then become: 

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃(1)𝑡)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑡 = 1,2, … ,7 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 8th. 

The fitted values then become: 

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃(2)𝑖)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2, … ,7 and  𝑡 = 𝑖 + 7 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 15th. 

The fitted values then become: 
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After constructing these versions, we compared the fitted values from both the stochastic 

models and the differential models. The result from this comparison is presented in the next 

chapter.  

 

  

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃(3)𝑖)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑡 = 1,2, … ,7 and  𝑡 = 𝑖 + 14 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 22nd. 

The fitted values then become: 

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃(4)𝑖)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑡 = 1,2, … ,7 and  𝑡 = 𝑖 + 21 

At time 𝑡 = 0 we have  𝑆0, 𝐼0 and 𝑅0; the data on August 29th. 

The fitted values then become: 

[

𝑆𝑓𝑡

𝐼𝑓𝑡

𝑅𝑓𝑡

] = (𝑃(5)𝑖)𝑇 [

𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2 and  𝑡 = 𝑖 + 28 
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4 Results  
4.1 30-day average comparison 
 

 

In this chapter, we compare the fitted values from both models using 30-day average for 

each model. The graphs below show the result of this comparison.  
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If we start with the 𝑆 compartment (first graph on the left), we can see that for the first 7 

days of the data, both models had a good fit to the observed data. After these days, we can see 

that the stochastic model had a better fit compared to the differential model. If we look at the 

first graph on the right side of the previous page, we can see the error for both models. This 

graph is a better view of the fit for both models. The model based on differential equations has 

error terms ranging from -555 to 0, whereas the error for the stochastic compartment model has a 

range of -216 to 44. The latter is a smaller range than the former.  

 

The second graph on the left shows the comparison for the 𝐼 compartment. In this case we 

can see that neither model has the same structure as the observed values. We can see that the 

graph of the stochastic compartmental model lies closer to the observed values than the graph of 

the differential equation model. If we look at the graph next to this one, we can see that the error 

terms for the stochastic compartmental model lies between -82 and 166. The error terms of the 

differential equation model have a range of 0 to 317. Just like with the 𝑆 compartment, the range 

of the error terms of the 𝐼 compartment is smaller for the stochastic compartmental model. 

 

The last graph on the left shows that for the first 13 to 14 days of the data, the fitted values 

from both models have a good fit to the observed values. After these days we see that the 

stochastic compartmental model has a better fit than the model with differential equations. If we 

look at the error terms in the graph to the right, we see that the error terms of the differential 

equation model have a range of -28 to 405. And the error terms of the stochastic compartmental 

model have a range of -35 to 187. Here we see that the range is smaller for the error terms from 

the stochastic compartmental model.  

 

To further analyze the comparison between both models we used the mean (𝜇) and the 

standard deviation (𝜎) of the error terms. Before presenting our findings, we define the following 

variables: 

 

 

 

 

 

(4.1.1) 

 

 

 

 

 

 

These calculations were also used for the comparison of the 14-day average and 7-day 

average versions of both models. The calculations done for 𝜇  and 𝜎 were done in Microsoft 

Excel. In the case of the 30-day average version we got the following results.  

𝜇𝑆 = 𝑆𝑒̅̅ ̅ =
∑ |𝑆𝑒𝑖|31

𝑖=0

31
, the mean for the error terms of the 𝑆 compartment. 

𝜇𝐼 = 𝐼𝑒̅ =
∑ |𝐼𝑒𝑖|31

𝑖=0

31
, the mean for the error terms of the 𝐼 compartment. 

𝜇𝑅 = 𝑅𝑒̅̅̅̅ =
∑ |𝑅𝑒𝑖|31

𝑖=0

31
, the mean for the error terms of the 𝑅 compartment. 

𝜎𝑆 = √
1

31
∑ (|𝑆𝑒𝑖| − 𝜇𝑆)231

𝑖=0 , the standard deviation of the error terms in 𝑆. 

𝜎𝐼 = √
1

31
∑ (|𝐼𝑒𝑖| − 𝜇𝐼)231

𝑖=0 , the standard deviation of the error terms in 𝐼. 

𝜎𝑅 = √
1

31
∑ (|𝑅𝑒𝑖| − 𝜇𝑅)231

𝑖=0 , the standard deviation of the error terms in 𝑅. 
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(4.1.2) mean (𝝁) and the standard deviation (𝝈) error terms (30-day average). 

 

Using this table, we could theorize that the stochastic model behaves better than the 

differential model. If we look at it, we can see that for each compartment the mean and the 

standard deviation of the stochastic compartmental model error is smaller than those of the 

differential equation model. This could also be seen in the graphs at the beginning. If we look at 

the 30-day average for both models, we can say that the stochastic compartmental model has a 

closer fit to the observed values compared to the model based on a system of differential 

equations.  

 

The purpose of this thesis was to determine whether the stochastic compartmental model 

gave similar results as a differential model. So, this means that the difference of the error means 

from both models must be statistically insignificant. To accurately determine this, we use a two-

sample t-test to determine whether the difference between the mean error from both models is 

significant. For this test, we used a confidence level of 0.95. The method used for these 

calculations can be found at Stat Trek (Hypothesis Test: Difference Between Means, 2021) and 

calculations were done using R studio. 

 

The test was done separately for each compartment. The first step was stating the test 

hypothesis for each compartment. In this case we stated the null hypothesis and the alternative 

hypothesis in the following way: 

 

𝑆 compartment 
Null hypothesis: 𝑆𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ − 𝑆𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 

Alternative hypothesis: 𝑆𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ − 𝑆𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 0 

 

𝐼 compartment 
Null hypothesis: 𝐼𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ − 𝐼𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 

Alternative hypothesis: 𝐼𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ − 𝐼𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 0 

 

𝑅 compartment 
Null hypothesis: 𝑅𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 

Alternative hypothesis: 𝑅𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ 0 

 

Each hypothesis was tested using a confidence level of 0.95 which puts the significance 

level 𝛼 at 0.05. If the p-value of the test is smaller than 𝛼 we should reject the null hypothesis. 

For our thesis hypothesis to be true, we would have to accept the null hypothesis. The test 

produced the following results for the p-value: 

𝑆 compartment p-value = 2.844𝑒−6 

𝐼 compartment p-value = 1.02𝑒−7 

 𝑺 𝑰 𝑹 

Model 𝝁𝑺 𝝈𝑺 𝝁𝑰 𝝈𝑰 𝝁𝑹 𝝈𝑹 

Differential 317 172 135 87 188 142 

Stochastic 79 62 55 39 61 56 
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𝑅 compartment p-value = 4.43𝑒−5 

 

As you can see, for each compartment, the p-value is smaller than 𝛼, so this means than we 

should reject the null hypothesis and accept the alternative hypothesis. This means that the 

difference between the mean error of the models is statistically significant. This means that for 

the 30-day average versions of the models, the difference is too significant to determine whether 

the stochastic model behave as well as the differential model. In the next section we present the 

comparison of the 14-day version for each model. 
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4.2 14-day average comparison 
 

 

In this chapter, we compare the fitted values from both models using 14-day average for 

each model. The graphs below show the result of this comparison. 
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If we start with the first graph on the left , the 𝑆 compartment, we can see that both models 

have an almost perfect fit to the observed values. If we look at the graph on the left, we see that 

error terms of the stochastic compartmental model ranges from -111 to 93 and those of the 

differential equation model has a range of -100 to 50. In this case we see that the differential 

equation model has a smaller range than the stochastic compartmental model  

 

The second graph on the left shows the comparison for the 𝐼 compartment. In this case we 

can see that for the first 15 days, the differential model has a better fit than the stochastic model. 

And for the rest of the data, we see that both models have the same fit to the observed values. 

neither model has the same structure as the observed values. If we look at the error terms, we can 

see that the error for the stochastic compartmental model ranges from -114 to 99 and for the 

differential model the range is -108 to 93. In this case the error terms of the differential model 

have a smaller range. 

 

The last graph on the left shows that the fitted values from both models have a good fit to 

the observed values. Both models have the same fitted values compared to the observed values. 

If we look at the error terms in the graph to the right, we see that the error terms of the 

differential equation model have a range of -51 to 116. And the error terms of the stochastic 

compartmental model have a range of -49 to 121. Here we see that the range is slightly smaller 

for the error terms from the stochastic compartmental model.  

 

We calculated the mean (𝜇) and the standard deviation (𝜎) of the error terms just like in the 

previous section using (4.1.1).  These calculations gave us the following results. 

(4.2.1) mean (𝝁) and the standard deviation (𝝈) error terms (14-day average). 

 

If we look at the table above, we can see that for each compartment the mean and the 

standard deviation of the stochastic compartmental model error and those of the differential 

equation model are close to each other. We see that the differential model has smaller mean error 

values for each compartment. But the stochastic model has smaller variance for only one 

compartment. In this case we can say that looking at the 14-day average for both models, the 

differential model has a closer fit to the observed values compared to the stochastic model.  

To accurately determine which whether the stochastic model behave as well as the 

differential model, we did a t-test just like in the previous section. In this case the null hypothesis 

and the alternative hypothesis become: 

 

𝑆 compartment 
Null hypothesis: 𝑆𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ − 𝑆𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 

Alternative hypothesis: 𝑆𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ − 𝑆𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 0 

 

 𝑺 𝑰 𝑹 

Model 𝝁𝑺 𝝈𝑺 𝝁𝑰 𝝈𝑰 𝝁𝑹 𝝈𝑹 

Differential 34 32 39 31 36 31 

Stochastic 39 27 40 55 37 33 
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𝐼 compartment 
Null hypothesis: 𝐼𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ − 𝐼𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 

Alternative hypothesis: 𝐼𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ − 𝐼𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 0 

 

𝑅 compartment 
Null hypothesis: 𝑅𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 

Alternative hypothesis: 𝑅𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ 0 

 

Each hypothesis was tested using a confidence level of 0.95 which puts the significance 

level 𝛼 at 0.05. The test produced the following results for the p-value: 

𝑆 compartment p-value = 0.008133 

𝐼 compartment p-value = 0.1517 

𝑅 compartment p-value = 0.3607 

 

As you can see that except for the 𝑆 compartment, each compartment has a p-value that is 

larger than 𝛼, so this means than we should accept the null hypothesis. This means that the 

difference between the mean error of the models is not statistically significant. This means that 

for the 14-day average versions of the models, the difference is not significant enough and thus, 

the stochastic model behaves statistically the same way as the differential model for the two 

compartments. The 𝑆 compartment has a p-value that is smaller than 𝛼, which means that for this 

compartment the difference between the error for the stochastic model and the differential model 

is statistically significant. Since not all compartments have the same test results, we cannot say 

with absolute certainty that the stochastic model behaves the same as the differential model. In 

the next section we present the comparison of the 7-day version for each model. 
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4.3 7-day average comparison 
 

 

In this chapter, we compare the fitted values from both models using 14-day average for 

each model. The graphs below show the result of this comparison 
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If we start with the first graph on the left , the 𝑆 compartment, we can see that both models 

have an almost perfect fit to the observed values. If we look at the graph on the left, we see that 

error terms of the stochastic compartmental model ranges from -15 to 65 and those of the 

differential equation model has a range of -34 to 91. In this case we see that the stochastic model 

has a smaller range than the differential model.  

 

The second graph on the left shows the comparison for the 𝐼 compartment. In this case, just 

as the 14-day average comparison, we can see that for the first 15 days, the differential model 

has a better fit than the stochastic model. And for the rest of the data, we see that both models 

have the same fit to the observed values. Neither model has the same structure as the observed 

values. If we look at the error terms, we can see that the error for the stochastic compartmental 

model ranges from -109 to 69 and for the differential model the range is -124 to 73. In this case 

the error terms of the stochastic model have a smaller range. 

 

The last graph on the left shows that the fitted values from both models have a good fit to 

the observed values. Both models have the same fitted values compared to the observed values. 

If we look at the error terms in the graph to the right, we see that the error terms of the 

differential equation model have a range of -81 to 62. And the error terms of the stochastic 

compartmental model have a range of -82 to 62. Here we see that the range is slightly smaller for 

the error terms from the differential model.  

 

We calculated the mean (𝜇) and the standard deviation (𝜎) of the error terms just like in the 

previous sections using (4.1.1).  These calculations gave us the following results. 

(4.3.1) mean (𝝁) and the standard deviation (𝝈) error terms (7-day average). 

 

If we look at the table above, we can see that for each compartment the mean and the 

standard deviation of the stochastic compartmental model error and those of the differential 

equation model are close to each other. We see that the stochastic model has smaller mean error 

values for each compartment, except for the 𝑅 compartment. In this case the mean error is the 

same for both models. The stochastic model has smaller variance for 𝑆 and 𝐼 . In this case we can 

say that looking at the 7-day average for both models, the stochastic model has a slightly closer 

fit to the observed values compared to the differential model.  

 

To accurately determine which whether the stochastic model behaves as well as the 

differential model, we did a t-test just like in the previous sections. In this case the null 

hypothesis and the alternative hypothesis become: 

 

𝑆 compartment 
Null hypothesis: 𝑆𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ − 𝑆𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 

Alternative hypothesis: 𝑆𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ − 𝑆𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 0 

 𝑺 𝑰 𝑹 

Model 𝝁𝑺 𝝈𝑺 𝝁𝑰 𝝈𝑰 𝝁𝑹 𝝈𝑹 

Differential 26 25 39 36 22 19 

Stochastic 23 19 33 30 22 20 
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𝐼 compartment 
Null hypothesis: 𝐼𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ − 𝐼𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 

Alternative hypothesis: 𝐼𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ − 𝐼𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 0 

 

𝑅 compartment 
Null hypothesis: 𝑅𝑒.𝑑𝑖𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑒.𝑠𝑡𝑜𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 

Alternative hypothesis: 𝑅𝑒.𝑑𝑖𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑒.𝑠𝑡𝑜𝑐ℎ

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ 0 

 

Each hypothesis was tested using a confidence level of 0.95 which puts the significance 

level 𝛼 at 0.05. The test produced the following results for the p-value: 

𝑆 compartment p-value = 0.2835 

𝐼 compartment p-value = 0.59 

𝑅 compartment p-value = 0.7699 

 

As you can see each compartment has a p-value that is larger than 𝛼, so this means than we 

should accept the null hypothesis. This means that the difference between the mean error of the 

models is not statistically significant. This means that for the 7-day average versions of the 

models, the difference is not significant enough and thus, the stochastic model behaves 

statistically the same way as the differential model. So in for this version of the models, we have 

proven the hypothesis that the stochastic model behaves just as well as the differential model.  

In two out of the three versions (14-day average and 7-day average), we saw that the 

stochastic model had a slightly better fit than the differential model. This observation gave the 

idea to go a step further with this research and determine how a stochastic model could be used 

to predict future data for COVID-19. We decided to use the 7-day average version of the 

stochastic compartmental model because this model had an overall closer fit to the observed 

values. Our findings are presented in the next section of this chapter.  
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4.4 Future predictions 
 

 

 

After the construction of the model in the previous section, we used the second part of the 

data from September to determine how we could use this model to predict the future number of 

cases for each compartment. In the previous section we decided to use the version of the 

stochastic model based on 7-day average. Now we had to determine was how many days the 

model could make predictions for. We used the average of the most recent 7 days to predict the 

data for the next couple of days. To determine how many days ahead we could make predictions 

for we started with 30 days. We ran the model for 30 iterations, so it calculated the predicted 

numbers for every day in September. For this part of the process, we had to define the following 

variables: 
                                                                               

 

                   (4.4.1) 

 

 

 

 
                                                                                                                                                              

 

(4.4.2) 

This was done the following way: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 𝑆𝑝 : The predicted values for the 𝑆 compartment. 

- 𝐼𝑝  : The predicted values for the 𝐼 compartment.  

- 𝑅𝑝 : The predicted values for the 𝑅 compartment. 

- 𝑆𝑑 : The relative difference for the 𝑆 compartment in percentage. 

- 𝐼𝑑  : The relative difference for the 𝐼 compartment in percentage.  

- 𝑅𝑑 : The relative difference for the 𝑅 compartment in percentage. 

- 𝑆𝑑𝑖 =  𝑆𝑖 − 𝑆𝑝𝑖, 𝑖 = 1,2, … ,30 

- 𝐼𝑑𝑖 =  𝐼𝑖 − 𝐼𝑝𝑖, 𝑖 = 1,2, … ,30 

- 𝑅𝑑𝑖 =  𝑅𝑖 − 𝑅𝑝𝑖, 𝑖 = 1,2, … ,30 

With time 𝑡 = 0, on August 31st, 𝑡 in days we have 𝑆0, 𝐼0 and 𝑅0. 

The transition probability matrix 𝑃 is given by: 

 𝑺 𝑰 𝑹 

𝑺 1 − 𝑢 𝑢 0 

𝑰 0 1 − 𝑣 𝑣 

𝑹 0 0 1 

 

 
 

  

With: 

𝑢 =

∑
𝑆𝑗−1 − 𝑆𝑗

𝑆𝑗−1

0
𝑗=𝑡−6

7
 

𝑣 =

∑
𝑅𝑗 − 𝑅𝑗−1

𝐼𝑗−1

0
𝑗=𝑡−6

7
 

[
𝑆𝑝𝑡

𝐼𝑝𝑡

𝑅𝑝𝑡

] = (𝑃𝑡)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑡 = 1,2, … ,30 
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After this we calculated the predicted values and compared them to the observed values and 

got the following results: 

 

   
 

   
 

   
 

For these graphs we look at the observed values of September with the predictive values 

retrieved from the model to compare these two values. Next to each compartment we also plotted 

the difference between the observed and the predicted values.  
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When we look at the graphs containing the difference between the observed values and the 

predicted values, we see that for the 𝑆 category, the difference started to increase after the 5th 

iteration. The difference in the other two compartments started increasing after later iterations. 

So based on 𝑆 we ran the model again and after every 5th iteration we updated the transition 

probability matrix with transition probabilities calculated using the seven most recent observed 

data before that iteration, like this: 

 

Prediction for September 1st through September 5th: 

With time 𝑡 = 0, on August 31st, 𝑡 in days we have 𝑆0, 𝐼0 and 𝑅0. 

The transition probability matrix 𝑃(1) has the probabilities: 

𝑢(1) =

∑
𝑆𝑗−1 − 𝑆𝑗

𝑆𝑗−1

0
𝑗=𝑡−6

7
 

𝑣(1) =

∑
𝑅𝑗 − 𝑅𝑗−1

𝐼𝑗−1

0
𝑗=𝑡−6

7
 

[
𝑆𝑝𝑡

𝐼𝑝𝑡

𝑅𝑝𝑡

] = (𝑃𝑡)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑡 = 1,2, … ,5 

 

Prediction for September 6th through September 10th: 

With time 𝑡 = 0, on September 5th, 𝑡 in days we have 𝑆0, 𝐼0 and 𝑅0. 

The transition probability matrix 𝑃(2) has the probabilities: 

𝑢(2) =

∑
𝑆𝑗−1 − 𝑆𝑗

𝑆𝑗−1

0
𝑗=𝑡−6

7
 

𝑣(2) =

∑
𝑅𝑗 − 𝑅𝑗−1

𝐼𝑗−1

0
𝑗=𝑡−6

7
 

[
𝑆𝑝𝑡

𝐼𝑝𝑡

𝑅𝑝𝑡

] = (𝑃𝑖)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2, … ,5 and 𝑡 = 𝑖 + 5 

 

Prediction for September 11st through September 15th: 

With time 𝑡 = 0, on September 10th, 𝑡 in days we have 𝑆0, 𝐼0 and 𝑅0. 

The transition probability matrix 𝑃(3) has the probabilities: 

𝑢(3) =

∑
𝑆𝑗−1 − 𝑆𝑗

𝑆𝑗−1

0
𝑗=𝑡−6

7
 

𝑣(3) =

∑
𝑅𝑗 − 𝑅𝑗−1

𝐼𝑗−1

0
𝑗=𝑡−6

7
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[
𝑆𝑝𝑡

𝐼𝑝𝑡

𝑅𝑝𝑡

] = (𝑃𝑡)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2, … ,5 and 𝑡 = 𝑖 + 10 

 

Prediction for September 16th through September 20th: 

With time 𝑡 = 0, on September 15th, 𝑡 in days we have 𝑆0, 𝐼0 and 𝑅0. 

The transition probability matrix 𝑃(4) has the probabilities: 

𝑢(4) =

∑
𝑆𝑗−1 − 𝑆𝑗

𝑆𝑗−1

0
𝑗=𝑡−6

7
 

𝑣(4) =

∑
𝑅𝑗 − 𝑅𝑗−1

𝐼𝑗−1

0
𝑗=𝑡−6

7
 

[
𝑆𝑝𝑡

𝐼𝑝𝑡

𝑅𝑝𝑡

] = (𝑃𝑖)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2, … ,5 and 𝑡 = 𝑖 + 15 

 

Prediction for September 21st through September 25th: 

With time 𝑡 = 0, on September 20th, 𝑡 in days we have 𝑆0, 𝐼0 and 𝑅0. 

The transition probability matrix 𝑃(5) has the probabilities: 

𝑢(5) =

∑
𝑆𝑗−1 − 𝑆𝑗

𝑆𝑗−1

0
𝑗=𝑡−6

7
 

𝑣(5) =

∑
𝑅𝑗 − 𝑅𝑗−1

𝐼𝑗−1

0
𝑗=𝑡−6

7
 

[
𝑆𝑝𝑡

𝐼𝑝𝑡

𝑅𝑝𝑡

] = (𝑃𝑖)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2, … ,5 and 𝑡 = 𝑖 + 20 

 

Prediction for September 26th through September 30th: 

With time 𝑡 = 0, on September 25th, 𝑡 in days we have 𝑆0, 𝐼0 and 𝑅0. 

The transition probability matrix 𝑃(6) has the probabilities: 

𝑢(6) =

∑
𝑆𝑗−1 − 𝑆𝑗

𝑆𝑗−1

0
𝑗=𝑡−6

7
 

𝑣(6) =

∑
𝑅𝑗 − 𝑅𝑗−1

𝐼𝑗−1

0
𝑗=𝑡−6

7
 

[
𝑆𝑝𝑡

𝐼𝑝𝑡

𝑅𝑝𝑡

] = (𝑃𝑖)𝑇 [
𝑆0

𝐼0

𝑅0

] ; 𝑖 = 1,2, … ,5 and 𝑡 = 𝑖 + 25 
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After running the model and adding new transition probabilities after every 5th iteration we 

got the following results: 

 

   
 

   
 

   
 

After we got these results, we evaluated the results by looking at the mean (μ) and standard 

deviation (σ) of the difference between the observed values and the predicted values. The 

calculation for the mean and standard deviation of the difference terms was done in the same 

way as that of the error terms in the previous sections. Those results are visible in the table on the 

next page.  
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(4.4.3) mean (𝝁) and the standard deviation (𝝈) difference.  

 𝑺 𝑰 𝑹 
𝝁 25 55 39 

𝝈 25 73 62 

The table above shows the mean and standard deviation of the difference between the 

observed values and the predicted values. Starting with 𝑆, we can see that the mean for the 

difference between the observed values and predicted values is equal to 25 with a standard 

deviation of 25. This means that if we run the prediction model, the mean difference between the 

predicted values and the actual values will be equal to 25 with a variation of 25, in other words 

the predicted number of susceptible people may be about 50 more or less than the actual number 

of susceptible individuals. For the 𝐼 compartment we can see that the mean and the standard 

deviation is much larger than the other two compartments. If we run the prediction model the 

difference between the actual values and predicted values for the 𝐼 compartment will be about 55 

with a standard deviation of 73. For the last compartment, the 𝑅 compartment we see that the 

mean difference between the predicted values and actual values is equal to 39 with a standard 

deviation of 62. 

 

This concludes the construction of a mathematical model. In this chapter we focused on the 

construction of the model and the comparison between the stochastic model and the differential 

model and in the next chapter we will present the conclusions and recommendations for this 

thesis. 
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5 Conclusion 
 

 

 

In this chapter we will present the conclusions from this study. The first thing we concluded 

from the results is that a stochastic compartmental model does approximate the COVID-19 

outbreak in Suriname as well as a model based on differential equations. Starting with the 

construction of the differential model the first thing we did was estimate parameters by 

calculating the average rates over 30, 14 and 7 days. After doing this, we did the same thing for 

the stochastic compartmental model. We then used the graphs in chapter 4 to compare the two 

models with each other.  

 

In Section 4.1 we saw that overall, the stochastic model had a better fit than the differential 

model when we looked at the graphs. And doing a t-test showed that the difference between the 

two models was statistically significant. So based on this, our hypothesis was not proven, when it 

came to using a 30-day average for the transition probabilities and the parameters. However, we 

believe that had the hypothesis been to determine whether the stochastic model behaved better 

than the differential model, these test results would have a different interpretation. But since we 

wanted to prove that there was no significant difference between the two models, these results 

had a different meaning. 

 

In section 4.2 we saw that overall, the differential model had a better fit than the stochastic 

model. The t-test proved for two out of three compartments that the difference between the two 

models was not significant enough, meaning there was no significant difference between the 

results of these models. When it came to the 14-day average, our hypothesis was correct.  

 

In section 4.3 we saw that both models had the same fit to the observed values. The 

stochastic model had a slightly better fit than the differential model. The t-test proved that for 

each compartment the stochastic model had the same results as the differentia model. Looking 

back at the results from the first three sections of chapter 4, we can say that in two out of the 

three versions our hypothesis was correct. Using a stochastic compartmental model to 

approximate the COVID-19 outbreak in Suriname gave the same results as using a 

compartmental model based on differential equations.  

 

However, it is possible that the fit of the stochastic model could be better if we had access to 

the actual data from the COVID-19 management team. As discussed in chapter 2, the data we 

retrieved from the website was not clean enough to use for our model. We believe that some of 

the error in both  models was a direct consequence of the method we used in cleaning up the 

data. 

 

In the fourth section of chapter 4 we looked at the possibility of using the model to predict 

future values. Here we saw that running the model for 30 days with the same transition 

probabilities gave us predictions that were far from the actual values. This, we believe it is also 

the result of a variance in the actual transition probabilities. Assuming that one transition 

probability could be used for a period of 30 days is a wrong assumption on our part. After seeing 

this we decided to rerun the model for 30 days but this time we added in a probability update 
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after every 5th iteration and in this case, we saw that the predicted values were closer to the 

actual values. This could be because every five days the actual transition probabilities of 

COVID-19 in Suriname change, which could be a direct consequence of preventive measures 

implemented by policy makers and the quality of the medical care in Suriname.  

 

We saw that the overall predicted number of removed individuals, which consists of the 

deceased and recovered cases, was predicted with a mean difference of 39 individuals. For this 

category, such a number is relatively small because this category has numbers in thousands. On 

the other hand, the overall prediction of the infected individuals had a mean difference of 55 

individuals. This number is relatively large because this category had numbers in hundreds. 39 in 

relation to a thousand is smaller than 55 in relation to a couple of hundred. We can see that the 

biggest difference for the infected is around September 20th, this suggests that the actual 

transition probability on that day was different than that of the week before. So, the assumption 

that predictions can be done based on the data from the previous week, is not accurate for every 

date. However, we believe that our model performs well enough to be able to predict the future 

behavior of COVID-19 Suriname. This in turn could be useful for developing and implementing 

preventive measures.  

 

We believe that with the right data we could expand this model with more compartments. 

For example, the infected compartment could be the divided in isolation and hospitalized. The 

latter can be divided nursing ward and ICU. The remove category could also be divided in 

recovered and deceased. We believe that with this expansion, the model would make more 

accurate predictions. It should be noted that we had intended to create a model containing all the 

compartments named previously, but due to the lack of detailed data this could not be achieved.  

 

We believe that given more detailed data, a more accurate model could be constructed using 

the methods used in this research. This model could in turn be used to predict future numbers for 

each compartment. After which these numbers could indicate how many resources are needed for 

the epidemic.  

 

Another thing to consider is that at the time this research concluded, a vaccine had already 

been developed and distributed to varies individuals. For future research we recommend that an 

additional compartment is added which consists of vaccinated individuals. This compartment 

will connect directly to the susceptible compartment and the probability that an individual leaves 

the susceptible group and goes to the vaccinated group will be equal to the average fraction of 

people vaccinated daily. For a more detailed model the vaccinated compartment could be divided 

in individuals who received one dosage and individuals who received both dosages. 
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Appendices 
 

A. Data 
 

Section 4.1 30-day average comparison 
Fitted values and error for differential model. (30-day average) 

Date 𝑺𝒇 𝑺𝒆 𝑰𝒇 𝑰𝒆 𝑹𝒇 𝑹𝒆 

01-08 588340 0 573 0 1187 0 

02-08 588287 -36 579 43 1234 -7 

03-08 588233 -26 585 54 1282 -28 

04-08 588178 -59 591 85 1330 -25 

05-08 588123 -73 598 98 1379 -25 

06-08 588067 -63 605 16 1428 47 

07-08 588011 -114 612 57 1478 56 

08-08 587954 -160 619 100 1528 59 

09-08 587896 -187 626 101 1579 85 

10-08 587838 -227 633 152 1630 74 

11-08 587779 -238 640 168 1682 69 

12-08 587719 -272 647 178 1735 93 

13-08 587659 -320 654 237 1788 82 

14-08 587598 -336 661 232 1842 103 

15-08 587536 -397 668 261 1896 136 

16-08 587474 -390 675 258 1951 132 

17-08 587411 -388 682 210 2007 178 

18-08 587347 -463 689 277 2063 187 

19-08 587283 -478 697 317 2120 161 

20-08 587218 -484 705 223 2177 261 

21-08 587152 -512 713 195 2235 317 

22-08 587086 -555 721 230 2294 324 

23-08 587019 -526 729 147 2353 378 

24-08 586951 -483 737 77 2413 405 

25-08 586882 -480 745 74 2474 405 

26-08 586813 -437 753 46 2535 390 

27-08 586743 -436 761 73 2597 362 

28-08 586672 -420 769 42 2660 377 

29-08 586600 -454 777 119 2723 335 

30-08 586528 -437 785 84 2787 353 

31-08 586455 -389 793 30 2852 359 
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Fitted values and error for stochastic model. (30-day average) 

Date 𝑺𝒇 𝑺𝒆 𝑰𝒇 𝑰𝒆 𝑹𝒇 𝑹𝒆 

01-08 588340 0 573 0 1187 0 

02-08 588264 -13 602 20 1234 -7 

03-08 588188 19 628 11 1284 -30 

04-08 588112 7 653 23 1335 -30 

05-08 588036 14 675 21 1389 -35 

06-08 587960 44 695 -74 1444 31 

07-08 587884 13 714 -45 1502 32 

08-08 587809 -15 731 -12 1560 27 

09-08 587733 -24 747 -20 1620 44 

10-08 587657 -46 761 24 1682 22 

11-08 587581 -40 774 34 1744 7 

12-08 587505 -58 787 38 1808 20 

13-08 587429 -90 798 93 1873 -3 

14-08 587354 -92 808 85 1939 6 

15-08 587278 -139 817 112 2005 27 

16-08 587202 -118 826 107 2072 11 

17-08 587126 -103 834 58 2140 45 

18-08 587050 -166 841 125 2209 41 

19-08 586975 -170 848 166 2278 3 

20-08 586899 -165 854 74 2348 90 

21-08 586823 -183 859 49 2418 134 

22-08 586747 -216 864 87 2488 130 

23-08 586672 -179 869 7 2560 171 

24-08 586596 -128 873 -59 2631 187 

25-08 586520 -118 877 -58 2703 176 

26-08 586444 -68 881 -82 2775 150 

27-08 586369 -62 884 -50 2847 112 

28-08 586293 -41 887 -76 2920 117 

29-08 586217 -71 890 6 2993 65 

30-08 586142 -51 892 -23 3066 74 

31-08 586066 0 894 -71 3140 71 
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Section 4.2 14-day average comparison 
Fitted values and error for differential model. (14-day average) 

Date 𝑺𝒇 𝑺𝒆 𝑰𝒇 𝑰𝒆 𝑹𝒇 𝑹𝒆 

01-08 588340 0 573 0 1187 0 

02-08 588274 -23 591 31 1235 -8 

03-08 588206 1 610 29 1284 -30 

04-08 588136 -17 629 47 1335 -30 

05-08 588064 -14 649 47 1387 -33 

06-08 587990 14 669 -48 1441 34 

07-08 587913 -16 690 -21 1497 37 

08-08 587834 -40 712 7 1554 33 

09-08 587753 -44 734 -7 1613 51 

10-08 587669 -58 757 28 1674 30 

11-08 587582 -41 781 27 1737 14 

12-08 587493 -46 805 20 1802 26 

13-08 587401 -62 830 61 1869 1 

14-08 587306 -44 856 37 1938 7 

15-08 587208 -69 883 46 2009 23 

16-08 587066 18 927 6 2107 -24 

17-08 586993 30 925 -33 2182 3 

18-08 586920 -36 923 43 2257 -7 

19-08 586847 -42 921 93 2332 -51 

20-08 586775 -41 919 9 2406 32 

21-08 586703 -63 917 -9 2480 72 

22-08 586631 -100 915 36 2554 64 

23-08 586559 -66 913 -37 2628 103 

24-08 586487 -19 911 -97 2702 116 

25-08 586415 -13 909 -90 2776 103 

26-08 586344 32 907 -108 2849 76 

27-08 586273 34 905 -71 2922 37 

28-08 586202 50 903 -92 2995 42 

29-08 586131 15 901 -5 3068 -10 

30-08 586104 -13 860 9 3136 4 

31-08 586064 2 826 -3 3210 1 
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Fitted values and error for stochastic model. (14-day average) 

Date 𝑺𝒇 𝑺𝒆 𝑰𝒇 𝑰𝒆 𝑹𝒇 𝑹𝒆 

01-08 588340 0 573 0 1187 0 

02-08 588254 -3 611 11 1235 -8 

03-08 588168 39 646 -7 1285 -31 

04-08 588082 37 678 -2 1339 -34 

05-08 587997 53 708 -12 1395 -41 

06-08 587911 93 735 -114 1454 21 

07-08 587825 72 760 -91 1515 19 

08-08 587739 55 782 -63 1579 8 

09-08 587653 56 803 -76 1644 20 

10-08 587568 43 822 -37 1710 -6 

11-08 587482 59 840 -32 1779 -28 

12-08 587396 51 856 -31 1848 -20 

13-08 587310 29 870 21 1919 -49 

14-08 587255 37 884 9 1992 -47 

15-08 587139 0 896 33 2065 -33 

16-08 587068 16 925 8 2107 -24 

17-08 586997 26 921 -29 2182 3 

18-08 586926 -42 918 48 2256 -6 

19-08 586855 -50 915 99 2330 -49 

20-08 586784 -50 912 16 2404 34 

21-08 586713 -73 909 -1 2478 74 

22-08 586642 -111 907 44 2551 67 

23-08 586571 -78 904 -28 2624 107 

24-08 586500 -32 902 -88 2697 121 

25-08 586430 -28 900 -81 2770 109 

26-08 586359 17 898 -99 2843 82 

27-08 586288 19 897 -63 2916 43 

28-08 586217 35 895 -84 2988 49 

29-08 586146 0 894 2 3060 -2 

30-08 586106 -15 858 11 3136 4 

31-08 586066 0 824 -1 3210 1 
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Section 4.3 7-day average comparison 
Fitted values and error for differential model. (7-day average) 

Date 𝑺𝒇 𝑺𝒆 𝑰𝒇 𝑰𝒆 𝑹𝒇 𝑹𝒆 

01-08 588340 0 573 0 1187 0 

02-08 588273 -22 590 32 1237 -10 

03-08 588204 3 607 32 1289 -35 

04-08 588133 -14 625 51 1342 -37 

05-08 588060 -10 643 53 1397 -43 

06-08 587985 19 662 -41 1453 22 

07-08 587908 -11 681 -12 1511 23 

08-08 587828 -34 701 18 1571 16 

09-08 587714 -5 743 -16 1643 21 

10-08 587631 -20 768 17 1701 3 

11-08 587545 -4 794 14 1761 -10 

12-08 587456 -9 820 5 1823 5 

13-08 587364 -25 847 44 1887 -17 

14-08 587269 -7 875 18 1954 -9 

15-08 587171 -32 904 25 2023 9 

16-08 587054 30 932 1 2114 -31 

17-08 586968 55 935 -43 2196 -11 

18-08 586882 2 938 28 2279 -29 

19-08 586796 9 941 73 2362 -81 

20-08 586709 25 944 -16 2445 -7 

21-08 586622 18 947 -39 2529 23 

22-08 586535 -4 950 1 2613 5 

23-08 586469 24 944 -68 2687 44 

24-08 586407 61 937 -123 2756 62 

25-08 586346 56 930 -111 2824 55 

26-08 586285 91 923 -124 2892 33 

27-08 586225 82 916 -82 2959 0 

28-08 586165 87 909 -98 3026 11 

29-08 586106 40 902 -6 3092 -34 

30-08 586104 -13 860 9 3136 4 

31-08 586064 2 826 -3 3210 1 
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Fitted values and error for stochastic model. (7-day average) 

Date 𝑺𝒇 𝑺𝒆 𝑰𝒇 𝑰𝒆 𝑹𝒇 𝑹𝒆 

01-08 588340 0 573 0 1187 0 

02-08 588262 -11 601 21 1237 -10 

03-08 588184 23 626 13 1290 -36 

04-08 588106 13 649 27 1345 -40 

05-08 588028 22 670 26 1402 -48 

06-08 587950 54 690 -69 1460 15 

07-08 587872 25 707 -38 1521 13 

08-08 587794 0 723 -4 1583 4 

09-08 587700 9 756 -29 1643 21 

10-08 587607 4 790 -5 1703 1 

11-08 587513 28 822 -14 1765 -14 

12-08 587420 27 851 -26 1829 -1 

13-08 587326 13 878 13 1896 -26 

14-08 587233 29 902 -9 1965 -20 

15-08 587139 0 925 4 2036 -4 

16-08 587052 32 934 -1 2114 -31 

17-08 586965 58 938 -46 2197 -12 

18-08 586878 6 942 24 2280 -30 

19-08 586791 14 945 69 2363 -82 

20-08 586705 29 948 -20 2447 -9 

21-08 586618 22 951 -43 2531 21 

22-08 586531 0 954 -3 2615 3 

23-08 586476 17 937 -61 2687 44 

24-08 586421 47 923 -109 2756 62 

25-08 586366 36 911 -92 2823 56 

26-08 586311 65 899 -100 2890 35 

27-08 586256 51 889 -55 2955 4 

28-08 586201 51 879 -68 3020 17 

29-08 586146 0 869 27 3085 -27 

30-08 586106 -15 858 11 3136 4 

31-08 586066 0 824 -1 3210 1 

 

 

 

 

 

 

 

 



56 
 

Section 0   
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Future predictions 
Predicted values and difference. (30 iterations with one matrix) 

Date 𝑺𝒑 𝑺𝒅 𝑰𝒑 𝑰𝒅 𝑹𝒑 𝑹𝒅 

01-09 586009 2 826 20 3266 -23 

02-09 585951 0 828 -23 3321 23 

03-09 585894 -9 830 -6 3376 15 

04-09 585869 -21 832 -21 3431 10 

05-09 585779 1 834 -16 3487 15 

06-09 585722 32 836 -69 3542 37 

07-09 585664 76 838 -113 3598 37 

08-09 585607 74 839 -106 3654 32 

09-09 585550 103 841 -119 3710 15 

10-09 585492 131 842 -164 3766 33 

11-09 585435 136 843 -154 3822 18 

12-09 585378 143 845 -147 3878 3 

13-09 585320 198 846 -207 3934 9 

14-09 585263 226 847 -276 3991 49 

15-09 585206 269 848 -314 4047 44 

16-09 585148 307 848 -387 4103 81 

17-09 585091 338 849 -433 4160 95 

18-09 585034 375 850 -535 4217 159 

19-09 584976 415 851 -622 4273 207 

20-09 584919 458 851 -713 4330 255 

21-09 584862 498 852 -734 4386 236 

22-09 584804 537 852 -734 4443 198 

23-09 584747 574 853 -735 4500 161 

24-09 584690 621 853 -744 4557 123 

25-09 584633 650 854 -735 4614 84 

26-09 584575 694 854 -745 4671 51 

27-09 584518 747 855 -783 4727 36 

28-09 584461 803 855 -788 4784 -15 

29-09 584404 833 855 -772 4841 -61 

30-09 584346 877 855 -777 4898 -99 
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Predicted values and difference. (30 iteration, matrix update every 5th iteration) 

Date 𝑺𝒑 𝑺𝒅 𝑰𝒑 𝑰𝒅 𝑹𝒑 𝑹𝒅 

01-09 586009 2 826 20 3266 -23 

02-09 585951 0 828 -23 3321 23 

03-09 585894 -9 830 -6 3376 15 

04-09 585836 12 832 -21 3431 10 

05-09 585779 1 834 -16 3487 15 

06-09 585728 26 809 -42 3563 16 

07-09 585675 65 800 -75 3624 11 

08-09 585623 58 792 -59 3684 2 

09-09 585571 82 785 -63 3744 -19 

10-09 585519 104 778 -100 3803 -4 

11-09 585586 -15 664 25 3850 -10 

12-09 585548 -27 651 47 3900 -19 

13-09 585511 7 640 -1 3950 -7 

14-09 585473 16 629 -58 3998 42 

15-09 585436 39 619 -85 4046 45 

16-09 585446 9 517 -56 4137 47 

17-09 585416 13 502 -86 4182 73 

18-09 585387 22 488 -173 4225 151 

19-09 585357 34 475 -246 4268 212 

20-09 585328 49 463 -325 4309 276 

21-09 585357 3 126 -8 4618 4 

22-09 585337 4 116 2 4647 -6 

23-09 585317 4 109 9 4674 -13 

24-09 585296 15 103 6 4700 -20 

25-09 585276 7 99 20 4724 -26 

26-09 585265 4 108 1 4727 -5 

27-09 585247 18 99 -27 4754 9 

28-09 585229 35 93 -26 4778 -9 

29-09 585211 26 88 -5 4801 -21 

30-09 585193 30 85 -7 4822 -23 
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B. Python script 
 

Section 3.1 Compartmental model based on a system of differential equations 
Python script for calculating the fitted values and error terms of the differential model. 

#Inputing the data for August 

Date = ['01-08-20','02-08-20','03-08-20','04-08-20','05-08-20','06-08-20','07-08-20','08-08-20','09-08-20','10-08-

20','11-08-20','12-08-20','13-08-20','14-08-20','15-08-20','16-08-20','17-08-20','18-08-20','19-08-20','20-08-

20','21-08-20','22-08-20','23-08-20','24-08-20','25-08-20','26-08-20','27-08-20','28-08-20','29-08-20','30-08-

20','31-08-20'] 

S = [588340,588251,588207,588119,588050,588004,587897,587794,587709,587611,587541,587447, 

587339,587262,587139,587084,587023,586884,586805,586734,586640,586531,586493,586468,586402,586376,

586307,586252,586146,586091,586066] 

I = [573,622,639,676,696,621,669,719,727,785,808,825,891,893,929,933,892,966,1014,928,908,951,876,814, 

819,799,834,811,896,869,823] 

R = [1187,1227,1254,1305,1354,1475,1534,1587,1664,1704,1751,1828,1870,1945,2032,2083,2185,2250, 

2281,2438,2552,2618,2731,2818,2879,2925,2959,3037,3058,3140,3211] 

# Importing the neccesary packages 

import matplotlib.pyplot as plt # To plot the results 

# The function for performing the calculations for the fitted values 

def Differential(t,a,b,S0,I0,R0):  

    for i in range (1,t+1): 

        dSdt = -a*S0*I0 # S'(0) 

        dIdt = a*S0*I0 -b*I0 # I'(0) 

        dRdt = b*I0 # R'(0) 

        S0 = round(S0 + dSdt) 

        I0 = round(I0 + dIdt) 

        R0 = round(R0 + dRdt) 

        Sf.append(S0) 

        If.append(I0) 

        Rf.append(R0) 

# calculating parameters  

A = [] 

B = [] 

for i in range (1,31): 

    ai = (S[i-1]-S[i])/(S[i-1]*I[i-0]) 

    A.append(ai) 

    bi = (R[i]-R[i-1])/I[i-1] 

    B.append(bi) 

# 30-day average 

# Calculating The parameters 

a = sum(A)/len(A) 

b = sum(B)/len(B 

# Calculating the fitted values 

Sf = [] # a list that will contain the fitted value of S  

If = [] # a list that will contain the fitted value of I  

Rf = [] # a list that will contain the fitted value of R  

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[0] 

I0 = I[0] 

R0 = R[0] 

Sf.append(S0) 

If.append(I0) 

Rf.append(R0) 
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Differential(30,a,b,S0,I0,R0) 

print("30 days") 

print("a = "+str(a)+"\nb = "+str(b)) 

# Calculating the error terms 

Se = [] # a list that will contain the error of S  

Ie = [] # a list that will contain the error of I  

Re = [] # a list that will contain the error of R  

for i in range (len(Date)): 

    Sei = (S[i]-Sf[i]) 

    Se.append(Sei) 

    Iei = (I[i]-If[i]) 

    Ie.append(Iei) 

    Rei = (R[i]-Rf[i]) 

    Re.append(Rei)  

# Plotting the fitted values and the error terms 

plt.figure(figsize=(10,7)) 

plt.plot(Date,S) 

plt.plot(Date,Sf) 

plt.legend(["S observed","S fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.title (" S observed and S fitted.30-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,I) 

plt.plot(Date,If) 

plt.plot(Date,R) 

plt.plot(Date,Rf) 

plt.legend(["I observed","I fitted","R observed","R fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" I and R observed; I and R fitted.30-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,Se) 

plt.plot(Date,Ie) 

plt.plot(Date,Re) 

plt.legend(["S error","I error","R error"]) 

plt.xlabel("Date") 

plt.ylabel("error") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title ("errors of S, I and R.30-day average") 

plt.show() 

# 14-day average 

# calculating the parameters 

# First 14 days 

a_1 = sum(A[0:14])/(14) 

b_1 = sum(B[0:14])/(14) 

# Calculating the fitted values 

Sf = [] # a list that will contain the fitted value of S  

If = [] # a list that will contain the fitted value of I  

Rf = [] # a list that will contain the fitted value of R  
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# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[0] 

I0 = I[0] 

R0 = R[0] 

Sf.append(S0) 

If.append(I0) 

Rf.append(R0) 

Differential(14,a_1,b_1,S0,I0,R0) 

# Second 14 days 

a_2 = sum(A[14:28])/(14) 

b_2 = sum(B[14:28])/(14) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[14] 

I0 = I[14] 

R0 = R[14] 

Differential(14,a_2,b_2,S0,I0,R0) 

# Last 2 days 

a_3 = sum(A[28:30])/(2) 

b_3 = sum(B[28:30])/(2 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[28] 

I0 = I[28] 

R0 = R[28] 

Differential(2,a_3,b_3,S0,I0,R0) 

print("14 days") 

print("a1 = "+str(a_1)+"\nb1 = "+str(b_1)) 

print("a2 = "+str(a_2)+"\nb2 = "+str(b_2)) 

print("a3 = "+str(a_3)+"\nb3 = "+str(b_3)) 

# Calculating the error terms 

Se = [] # a list that will contain the error of S  

Ie = [] # a list that will contain the error of I  

Re = [] # a list that will contain the error of R  

for i in range (len(Date)): 

    Sei = (S[i]-Sf[i]) 

    Se.append(Sei) 

    Iei = (I[i]-If[i]) 

    Ie.append(Iei) 

    Rei = (R[i]-Rf[i]) 

    Re.append(Rei)  

# Plotting the fitted values and the error terms 

plt.figure(figsize=(10,7)) 

plt.plot(Date,S) 

plt.plot(Date,Sf) 

plt.legend(["S observed","S fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.title (" S observed and S fitted. 14-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,I) 

plt.plot(Date,If) 

plt.plot(Date,R) 

plt.plot(Date,Rf) 

plt.legend(["I observed","I fitted","R observed","R fitted"]) 

plt.xlabel("Date") 



62 
 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" I and R observed; I and R fitted.14-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,Se) 

plt.plot(Date,Ie) 

plt.plot(Date,Re) 

plt.legend(["S error","I error","R error"]) 

plt.xlabel("Date") 

plt.ylabel("error") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title ("errors of S, I and R.14-day average") 

plt.show() 

# 7-day average 

# calculating the transition probabilities 

# First 7 days 

a_1 = sum(A[0:7])/(7) 

b_1 = sum(B[0:7])/(7) 

# Calculating the fitted values 

Sf = [] # a list that will contain the fitted value of S  

If = [] # a list that will contain the fitted value of I  

Rf = [] # a list that will contain the fitted value of R  

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[0] 

I0 = I[0] 

R0 = R[0] 

Sf.append(S0) 

If.append(I0) 

Rf.append(R0) 

Differential(7,a_1,b_1,S0,I0,R0) 

# Second 7 days 

a_2 = sum(A[7:14])/(7) 

b_2 = sum(B[7:14])/(7) 

 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[7] 

I0 = I[7] 

R0 = R[7] 

Differential(7,a_2,b_2,S0,I0,R0) 

# Third 7 days 

a_3 = sum(A[14:21])/(7) 

b_3 = sum(B[14:21])/(7) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[14] 

I0 = I[14] 

R0 = R[14] 

Differential(7,a_3,b_3,S0,I0,R0) 

# Fourth 7 days 

a_4 = sum(A[21:28])/(7) 

b_4 = sum(B[21:28])/(7) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[21] 

I0 = I[21] 
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R0 = R[21 

Differential(7,a_4,b_4,S0,I0,R0) 

# Last 2 days 

a_5 = sum(A[28:30])/(2) 

b_5 = sum(B[28:30])/(2) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[28] 

I0 = I[28] 

R0 = R[28] 

Differential(2,a_5,b_5,S0,I0,R0) 

print("7 days") 

print("a1 = "+str(a_1)+"\nb1 = "+str(b_1)) 

print("a2 = "+str(a_2)+"\nb2 = "+str(b_2)) 

print("a3 = "+str(a_3)+"\nb3 = "+str(b_3)) 

print("a4 = "+str(a_4)+"\nb4 = "+str(b_4)) 

print("a5 = "+str(a_5)+"\nb5 = "+str(b_5)) 

# Calculating the error terms 

Se = [] # a list that will contain the error of S  

Ie = [] # a list that will contain the error of I  

Re = [] # a list that will contain the error of R  

for i in range (len(Date)): 

    Sei = (S[i]-Sf[i]) 

    Se.append(Sei) 

    Iei = (I[i]-If[i]) 

    Ie.append(Iei) 

    Rei = (R[i]-Rf[i]) 

    Re.append(Rei)  

# Plotting the fitted values and the error terms 

plt.figure(figsize=(10,7)) 

plt.plot(Date,S) 

plt.plot(Date,Sf) 

plt.legend(["S observed","S fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.title (" S observed and S fitted. 7-day average") 

plt.show( 

plt.figure(figsize=(10,7)) 

plt.plot(Date,I) 

plt.plot(Date,If) 

plt.plot(Date,R) 

plt.plot(Date,Rf) 

plt.legend(["I observed","I fitted","R observed","R fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" I and R observed; I and R fitted.7-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,Se) 

plt.plot(Date,Ie) 

plt.plot(Date,Re) 

plt.legend(["S error","I error","R error"]) 

plt.xlabel("Date") 

plt.ylabel("error") 
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plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title ("errors of S, I and R.7-day average") 

plt.show() 

 

Section 3.2 Stochastic compartmental models 
Python script for calculating the fitted values and error terms of the stochastic model. 

#Inputing the data for August 

Date = ['01-08-20','02-08-20','03-08-20','04-08-20','05-08-20','06-08-20','07-08-20','08-08-20','09-08-20','10-08-

20','11-08-20','12-08-20','13-08-20','14-08-20','15-08-20','16-08-20','17-08-20','18-08-20','19-08-20','20-08-

20','21-08-20','22-08-20','23-08-20','24-08-20','25-08-20','26-08-20','27-08-20','28-08-20','29-08-20','30-08-

20','31-08-20'] 

S = [588340,588251,588207,588119,588050,588004,587897,587794,587709,587611,587541,587447, 

587339,587262,587139,587084,587023,586884,586805,586734,586640,586531,586493,586468,586402,586376,

586307,586252,586146,586091,586066] 

I = [573,622,639,676,696,621,669,719,727,785,808,825,891,893,929,933,892,966,1014,928,908,951,876,814, 

819,799,834,811,896,869,823] 

R = [1187,1227,1254,1305,1354,1475,1534,1587,1664,1704,1751,1828,1870,1945,2032,2083,2185,2250, 

2281,2438,2552,2618,2731,2818,2879,2925,2959,3037,3058,3140,3211] 

States = ["S","I","R"] 

# Importing the neccesary packages 

import matplotlib.pyplot as plt # To plot the results 

import numpy # To perform matrix calculations 

# The function for performing the matrix calculations for the fitted values 

def Matrix(P,t,S0,I0,R0): 

    Pi = Id 

    for i in range (1,t+1):  

        Pi = numpy.array(Pi@P) 

        St = round((S0*(Pi.item(0))) +(I0*(Pi.item(3))) +(R0*(Pi.item(6)))) 

        It = round((S0*(Pi.item(1))) +(I0*(Pi.item(4))) +(R0*(Pi.item(7)))) 

        Rt = round((S0*(Pi.item(2))) +(I0*(Pi.item(5))) +(R0*(Pi.item(8)))) 

        Sf.append(St) 

        If.append(It) 

        Rf.append(Rt) 

# Identity matrix 

Id = numpy.array([[1,0,0],[0,1,0],[0,0,1]])      

# calculating transition proportions 

U = [] 

V = [] 

for i in range (1,31): 

    ui = (S[i-1]-S[i])/S[i-1] 

    U.append(ui) 

    vi = (R[i]-R[i-1])/I[i-1] 

    V.append(vi) 

# 30-day average 

# Calculating Transition probability 

u = sum(U)/len(U) 

v = sum(V)/len(V) 

u1 = 1 - u 

v1 = 1-v 

Spr = [round(u1,5),0,0] 

Ipr = [round(u,5),round(v1,5),0] 

Rpr = [0,round(v,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 
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print('Transition Probability matrix for 30-day average version') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 

        print('-' * len(line)) 

# Calculating the fitted values 

Sf = [] # a list that will contain the fitted value of S  

If = [] # a list that will contain the fitted value of I  

Rf = [] # a list that will contain the fitted value of R  

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[0] 

I0 = I[0] 

R0 = R[0] 

# The Transition probability matrix 

P = numpy.array([[u1,   u,   0],[ 0,  v1,   v],[ 0,   0,   1]]) 

Sf.append(S0) 

If.append(I0) 

Rf.append(R0) 

Matrix(P,30,S0,I0,R0) 

# Calculating the error terms 

Se = [] # a list that will contain the relative error of S in percentage 

Ie = [] # a list that will contain the relative error of I in percentage 

Re = [] # a list that will contain the relative error of R in percentage 

for i in range (len(Date)): 

    Sei = (S[i]-Sf[i]) 

    Se.append(Sei) 

    Iei = (I[i]-If[i]) 

    Ie.append(Iei) 

    Rei = (R[i]-Rf[i]) 

    Re.append(Rei)  

# Plotting the fitted values and the error terms 

plt.figure(figsize=(10,7)) 

plt.plot(Date,S) 

plt.plot(Date,Sf) 

plt.legend(["S observed","S fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.title (" S observed and S fitted.30-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,I) 

plt.plot(Date,If) 

plt.plot(Date,R) 

plt.plot(Date,Rf) 

plt.legend(["I observed","I fitted","R observed","R fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" I and R observed; I and R fitted.30-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,Se) 

plt.plot(Date,Ie) 
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plt.plot(Date,Re) 

plt.legend(["S error","I error","R error"]) 

plt.xlabel("Date") 

plt.ylabel("Percentage (%)") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" Relative errors of S, I and R.30-day average") 

plt.show() 

# 14-day average 

# calculating the transition probabilities 

# First 14 days 

u_1 = sum(U[0:14])/(14) 

v_1 = sum(V[0:14])/(14) 

u1_1 = 1-u_1 

v1_1 = 1-v_1 

Spr = [round(u1_1,5),0,0] 

Ipr = [round(u_1,5),round(v1_1,5),0] 

Rpr = [0,round(v_1,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 

print('Transition Probability matrix for 14-day average version part 1') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 

        print('-' * len(line)) 

# Calculating the fitted values 

Sf = [] # a list that will contain the fitted value of S  

If = [] # a list that will contain the fitted value of I  

Rf = [] # a list that will contain the fitted value of R  

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[0] 

I0 = I[0] 

R0 = R[0] 

# The Transition probability matrix 

P = numpy.array([[u1_1,   u_1,   0],[ 0,  v1_1,   v_1],[ 0,   0,   1]]) 

Sf.append(S0) 

If.append(I0) 

Rf.append(R0) 

Matrix(P,14,S0,I0,R0) 

# Second 14 days 

u_2 = sum(U[14:28])/(14) 

v_2 = sum(V[14:28])/(14) 

u1_2 = 1-u_2 

v1_2 = 1-v_2 

Spr = [round(u1_2,5),0,0] 

Ipr = [round(u_2,5),round(v1_2,5),0] 

Rpr = [0,round(v_2,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 

print('Transition Probability matrix for 14-day average version part 2') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 

        print('-' * len(line)) 
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# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[14] 

I0 = I[14] 

R0 = R[14] 

# The Transition probability matrix 

P = numpy.array([[u1_2,   u_2,   0],[ 0,  v1_2,   v_2],[ 0,   0,   1]]) 

Matrix(P,14,S0,I0,R0) 

# Last 2 days 

u_3 = sum(U[28:30])/(2) 

v_3 = sum(V[28:30])/(2) 

u1_3 = 1-u_3 

v1_3 = 1-v_3 

Spr = [round(u1_3,5),0,0] 

Ipr = [round(u_3,5),round(v1_3,5),0] 

Rpr = [0,round(v_3,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 

print('Transition Probability matrix for 14-day average version part 3') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 

        print('-' * len(line)) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[28] 

I0 = I[28] 

R0 = R[28] 

# The Transition probability matrix 

P = numpy.array([[u1_3,   u_3,   0],[ 0,  v1_3,   v_3],[ 0,   0,   1]]) 

Matrix(P,2,S0,I0,R0) 

# Calculating the error terms 

Se = [] # a list that will contain the relative error of S in percentage 

Ie = [] # a list that will contain the relative error of I in percentage 

Re = [] # a list that will contain the relative error of R in percentage 

for i in range (len(Date)): 

    Sei = (S[i]-Sf[i]) 

    Se.append(Sei) 

    Iei = (I[i]-If[i]) 

    Ie.append(Iei) 

    Rei = (R[i]-Rf[i]) 

    Re.append(Rei)  

# Plotting the fitted values and the error terms 

plt.figure(figsize=(10,7)) 

plt.plot(Date,S) 

plt.plot(Date,Sf) 

plt.legend(["S observed","S fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.title (" S observed and S fitted. 14-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,I) 

plt.plot(Date,If) 

plt.plot(Date,R) 

plt.plot(Date,Rf) 



68 
 

plt.legend(["I observed","I fitted","R observed","R fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" I and R observed; I and R fitted.14-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,Se) 

plt.plot(Date,Ie) 

plt.plot(Date,Re) 

plt.legend(["S error","I error","R error"]) 

plt.xlabel("Date") 

plt.ylabel("Percentage (%)") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" Relative errors of S, I and R.14-day average") 

plt.show() 

# 7-day average 

# calculating the transition probabilities 

# First 7 days 

u_1 = sum(U[0:7])/(7) 

v_1 = sum(V[0:7])/(7) 

u1_1 = 1-u_1 

v1_1 = 1-v_ 

Spr = [round(u1_1,5),0,0] 

Ipr = [round(u_1,5),round(v1_1,5),0] 

Rpr = [0,round(v_1,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 

print('Transition Probability matrix for 7-day average version part 1') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 

        print('-' * len(line)) 

# Calculating the fitted values 

Sf = [] # a list that will contain the fitted value of S  

If = [] # a list that will contain the fitted value of I  

Rf = [] # a list that will contain the fitted value of R  

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[0] 

I0 = I[0] 

R0 = R[0] 

# The Transition probability matrix 

P = numpy.array([[u1_1,   u_1,   0],[ 0,  v1_1,   v_1],[ 0,   0,   1]]) 

Sf.append(S0) 

If.append(I0) 

Rf.append(R0) 

Matrix(P,7,S0,I0,R0) 

# Second 7 days 

u_2 = sum(U[7:14])/(7) 

v_2 = sum(V[7:14])/(7) 

u1_2 = 1-u_2 

v1_2 = 1-v_2 

 



69 
 

Spr = [round(u1_2,5),0,0] 

Ipr = [round(u_2,5),round(v1_2,5),0] 

Rpr = [0,round(v_2,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 

print('Transition Probability matrix for 7-day average version part 2') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 

        print('-' * len(line) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[7] 

I0 = I[7] 

R0 = R[7] 

# The Transition probability matrix 

P = numpy.array([ [u1_2,   u_2,   0],[ 0,  v1_2,   v_2], [ 0,   0,   1] ]) 

Matrix(P,7,S0,I0,R0) 

# Third 7 days 

u_3 = sum(U[14:21])/(7) 

v_3 = sum(V[14:21])/(7) 

u1_3 = 1-u_3 

v1_3 = 1-v_3 

Spr = [round(u1_3,5),0,0] 

Ipr = [round(u_3,5),round(v1_3,5),0] 

Rpr = [0,round(v_3,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 

print('Transition Probability matrix for 7-day average version part 3') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 

        print('-' * len(line)) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[14] 

I0 = I[14] 

R0 = R[14] 

# The Transition probability matrix 

P = numpy.array([[u1_3,   u_3,   0],[ 0,  v1_3,   v_3],[ 0,   0,   1]]) 

Matrix(P,7,S0,I0,R0) 

# Fourth 7 days 

u_4 = sum(U[21:28])/(7) 

v_4 = sum(V[21:28])/(7) 

u1_4 = 1-u_4 

v1_4 = 1-v_4 

Spr = [round(u1_4,5),0,0] 

Ipr = [round(u_4,5),round(v1_4,5),0] 

Rpr = [0,round(v_4,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 

print('Transition Probability matrix for 7-day average version part 4') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 
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        print('-' * len(line)) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[21] 

I0 = I[21] 

R0 = R[21] 

# The Transition probability matrix 

P = numpy.array([[u1_4,   u_4,   0],[ 0,  v1_4,   v_4],[ 0,   0,   1]]) 

Matrix(P,7,S0,I0,R0) 

# Last 2 days 

u_5 = sum(U[28:30])/(2) 

v_5 = sum(V[28:30])/(2) 

u1_5 = 1-u_5 

v1_5 = 1-v_5 

Spr = [round(u1_5,5),0,0] 

Ipr = [round(u_5,5),round(v1_5,5),0] 

Rpr = [0,round(v_5,5),1] 

Names = [' ','S','I','R'] 

data = [Names] + list(zip(States,Spr,Ipr,Rpr)) 

print('Transition Probability matrix for 14-day average version part 5') 

for i,d in enumerate(data): 

    line = '|'.join(str(x).ljust(11) for x in d) 

    print(line) 

    if i == 0: 

        print('-' * len(line)) 

# The initial values for S, I and R at t = 0 (August 1st) 

S0 = S[28] 

I0 = I[28] 

R0 = R[28] 

# The Transition probability matrix 

P = numpy.array([[u1_5,   u_5,   0],[ 0,  v1_5,   v_5], [ 0,   0,   1]]) 

Matrix(P,2,S0,I0,R0) 

# Calculating the error terms 

Se = [] # a list that will contain the relative error of S in percentage 

Ie = [] # a list that will contain the relative error of I in percentage 

Re = [] # a list that will contain the relative error of R in percentage 

for i in range (len(Date)): 

    Sei = (S[i]-Sf[i]) 

    Se.append(Sei) 

    Iei = (I[i]-If[i]) 

    Ie.append(Iei) 

    Rei = (R[i]-Rf[i]) 

    Re.append(Rei)  

# Plotting the fitted values and the error terms 

plt.figure(figsize=(10,7)) 

plt.plot(Date,S) 

plt.plot(Date,Sf) 

plt.legend(["S observed","S fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.title (" S observed and S fitted. 7-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,I) 

plt.plot(Date,If) 

plt.plot(Date,R) 
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plt.plot(Date,Rf) 

plt.legend(["I observed","I fitted","R observed","R fitted"]) 

plt.xlabel("Date") 

plt.ylabel("People") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" I and R observed; I and R fitted.7-day average") 

plt.show() 

plt.figure(figsize=(10,7)) 

plt.plot(Date,Se) 

plt.plot(Date,Ie) 

plt.plot(Date,Re) 

plt.legend(["S error","I error","R error"]) 

plt.xlabel("Date") 

plt.ylabel("Percentage (%)") 

plt.xticks(Date,rotation='-45') 

plt.grid() 

plt.title (" Relative errors of S, I and R.7-day average") 

plt.show() 
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